
Cut Sweeping

Niklas Een
Cadence Research Labs, Berkeley, USA.

Abstract

This paper presents a light-weight sweeping method, sim-
ilar to SAT- and BDD-sweeping. Performance are on the
order of 10x to 100x faster than SAT-sweeping for large de-
signs, while achieving about 50-90% of the reductions.

1 Introduction

In recent years, two methods for circuit minimization
through detection of equivalent points,BDD-sweeping[4]
and SAT-sweeping[3, 8], have become prevalent in logic
synthesis and verification [6, 7]. Both methods are in prin-
ciple complete, i.e. they find all existing pairs of equiva-
lent points in the circuit, but are for reasons of scalability
often made incomplete by introducing multiple sweeping
layers (for BDD-sweeping) or time-bounded SAT-runs (for
SAT-sweeping). Even so, these methods do not scale well
beyond a million gates, and few applications have the time-
budget to sweep such large designs.

For those cases, this paper proposes a new algorithm,
cut-sweeping, that is inherently incomplete but scales to
much larger designs than the previous methods. Experi-
mental results show that for million-gate designs, runtime
is on the order of seconds and minutes rather than hours
and days, while still picking off 50-90% of all equivalences
present in the circuit. This allows for the method to be used
in applications such as hardware accelerated emulation or
FPGA synthesis.

The cut-sweeping method is based on partially enumer-
ating, and hashing, thek-feasible cutsof the circuit [5]. If
two nodes try to hash the same cut, they are found equiv-
alent. On a high level, the procedure resembles BDD-
sweeping, but with the BDDs kept very small (actually rep-
resented as truth-tables), and the sweeping layers being de-
termined individually for each node in a much finer grained
fashion than for BDD-sweeping.

Cadence Technical Report CDNL-TR-2007-0510, May 21, 2007

2 Preliminaries

A combinationalboolean networkis a directed acyclic
graph (DAG) with nodes corresponding to logic gates and
directed edges corresponding to wires connecting the gates.
Incoming edges of a node are calledfaninsand outgoing
edges are calledfanouts. The primary inputs(PIs) of the
network are nodes without fanins. Theprimary outputs
(POs) are nodes without fanouts. The PIs and POs define
the external connections of the network.

A special case of a boolean network is theand-inverter
graph (AIG), containing four node types: PIs, POs, two-
input AND-nodes, and the constantTRUE modeled as a
node with one output and no inputs. Inverters are repre-
sented as attributes on the edges, dividing them intoun-
signededges andsigned(or complemented) edges. An AIG
is said to bereduced and constant-freeif (1) all the fanouts
of the constantTRUE, if any, feed into POs; and (2) no
AND-node has both of its fanins point to the same node.
Furthermore, an AIG is said to bestructurally-hashedif no
two AND-nodes have the same two fanin edges including
the sign.

A cut C of noden is a set of nodes of the AIG, called
leaves, such that any path from a PI ton passes through at
least one leaf. Atrivial cut of a node is the cut composed of
the node itself. A cut isk-feasibleif the number of nodes in
it does not exceedk.

Cut Enumeration. Here we review the standard procedure
for enumerating allk-feasible cuts of an AIG. Let∆1 and
∆2 be two sets of cuts, and the merge operator⊗ be defined
as follows:

∆1 ⊗ ∆2 = { C1 ∪ C2 | C1 ∈ ∆1, C2 ∈ ∆2 }

By ∆1 ⊗k ∆2 we denote the set∆1 ⊗ ∆2 restricted to cuts
with ≤ k leaves. Further, letn1, n2 be the first and second
fanin of noden, and letΦ(n) denote allk-feasible cuts of
n, recursively computed as follows:

Φ(n) =

Φ(n1) , n ∈ PO
{{n}} , n ∈ PI
{{n}} ∪ Φ(n1) ⊗k Φ(n2) , n ∈ AND

This formula gives a simple procedure for computing allk-
feasible cuts in a single topological pass from the PIs to the
POs. Informally, the cut-set of an AND-node is the trivial
cut plus the pair-wise unions of cuts belonging to the fanins,
excluding those cuts whose size exceedsk.

3 Cut Sweeping

The basic procedure of cut-sweeping works as follows: A
bottom-upk-feasible cut-enumeration, as described in the
previous section, is performed on the AIG. The cut-widthk

1

is determined by the user and is fixed throughout the pro-
cedure. For each cut, the functional relation between the
inputs (leaves) and the output is computed and stored as a
2k-bit truth-table (FTB– “function table”) together with the
cut. If the cut-sets for two nodesm andn have a common
element, and the associated FTBs are the same,m andn are
proven equivalent. The information is immediately used to
rewrite the network by substituting eitherm for n or vice
versa, after which the cut-enumeration is resumed.

The rationale behind the procedure is that most of the
equivalent points detected by existing sweeping methods
are local, and if we use wide enough cuts, we should be
able to capture a big part of them.

3.1 Cut normalization

In a practical implementation of the procedure just outlined,
an actual cut will be stored as a vector, i.e. an ordered se-
quence. The bit-pattern comprising the FTB will depend on
the order, so to facilitate comparison between cuts (includ-
ing their FTBs) the cut-inputs are kept sorted according to
a global order on the gates (any order will do). Moreover,
it is desirable to identify functionsf and¬f , because they
can be used interchangeably in an AIG by adjusting the sign
attributes on the arcs accordingly. As cuts are stored during
the enumeration, we therefore enforce the lowest bit of the
FTB to be zero by simply inverting the whole FTB if neces-
sary, and remembering that the cut now represents¬f rather
thanf .

3.2 Cut merging

Combining two cutsC1 andC2 with their associated FTBs
requires the following steps:

1. The inputs (stored as vectors) are merged and sorted.
If the new input vector is larger than the cut-widthk,
the merge operation is aborted.

2. The FTBs ofC1 andC2 are manipulated to reflect the
new input order and the extra inputs from the other cut.

3. The two FTBs are bitwise-ANDed (there are only
AND-nodes in an AIG) to produce the FTB for the new
cut.

Additionally, a fourth step can be carried out: scanning the
new FTB for redundant inputs. Although the cutstruc-
turally depends on all inputs ofC1 ∪ C2, due to reconver-
gence it often happens that inputs aresemanticallymasked
(i.e. the input does not affect the output). In the experiments
(section 5), this step is performed.

3.3 Prioritizing cuts

Given the procedure for merging two cuts, implementing
the⊗k operation is straight-forward. To make the procedure
feasible for larger cut-widths, however, some cuts have to
be discarded. If two nodes are equivalent, it is enough to
detect justonecommon cut, which motivates keeping only
a few “good” cuts for each node. These “priority cuts” [1]
should be chosen to maximize the likelihood of capturing
equivalent nodes in the local transitive fanout. We make
two observations:

1. Nodes with a single fanout need not be used as input to
a cut. If two nodesm andn have a common cut, there
must be a common cut where every node has fanout
degree≥ 2.

2. Nodes with a high fanout degree will occur in more
cuts, and thus, cuts whereall inputs have a high fanout
degree should have a higher chance of occurring in
multiple cut-sets.

From the second bullet we propose the following sorting
criteria for cuts:

cutQuality(C) =
∑

n∈C

1

nFanouts(n)

Here alow valuemeanshigh quality. For each node, theN
cuts with the highest quality are kept.

3.4 Equivalence detection and merging

Equivalent points are detected by storing cuts (including
their FTBs) in a hash-table. The cut will be the hash-key,
and the node from which we computed the cut will be the
hash-value (i.e. a mapping from cuts to nodes). If, when
hashing a cut for noden, we find that the cut is already
present in the table with hash-valuem, the two nodes have
just been proven equivalent. As outlined in the beginning
of this section, we choose to rewrite the network as soon
as we find two points that are equivalent. Because of this,
nodem may actually already have been deleted by a pre-
vious transformation, in which case the hash-entry is stale
and we should just replace it withn instead. Ifm does still
exist, we rewire the network to usem in all places currently
usingn. Noden is then deleted, as well as any recursively
redundant fanins ofn.

In principle, it may sometimes be better to do the substi-
tution in the other direction (keepingn and deletingm), but
thenm must not be in the transitive fanin ofn.

4 Implementation

Figure 1 and2 present the cut-sweep algorithm in pseudo
code. The following types are used:

2

Name Original Size SAT-sweeping Cut-sweeping (k=12 N=10) Cut-sweeping (k=8 N=5)

design 1 678,396 502,871 — 2154 s 541,767 (78%) — 74 s 572,050 (61%) — 8 s
design 2 1,378,882 1,184,646 — 4021 s 1,209,155 (87%) — 110 s 1,223,025 (80%) — 14 s
design 3 2,174,188 1,871,434 — 7379 s 1,906,063 (89%) — 171 s 1,931,225 (80%) — 23 s
design 4 2,403,322 2,097,401 — 15,003 s 2,240,949 (53%) — 109 s 2,255,588 (48%) — 20 s
design 5 3,160,067 2,744,998 — 22,422 s 2,832,021 (79%) — 311 s 2,886,273 (66%) — 40 s
design 6 17,409,623 [> 24 h] 17,130,262 — 1824 s 17,176,208 — 273 s

Table 1. SAT- and cut-sweeping comparison.Sizes are in number of AND-gates (left of “—”), run-times in seconds (right
of “—”). Reduction rates for cut-sweeping are compared to SAT-sweeping and printed within parenthesis (if SAT-sweeping
removes 500 gates, and cut-sweeping removes 400 gates, then80% is printed).

Wire – A wire is a pointer to a gate plus asign-bit
(corresponding to an arc in the And-Inverter-graph).

Cut – A cut is a set of gates (represented as unsigned
wires) plus an FTB. A type-declaration may look like:

struct Cut {
Wire inputs[size]
Bit ftb [2size]

}

Cuts – A vector/array of cuts. Supports ’push(elem)’
operation for adding elements at the end, and ’size()’
for returning the current length of the vector.

Map〈From,To〉 – A mapping from typeFrom to type
To. Depending onFrom, it is implemented either by
a hash-table or by a vector. Supports ’set(key,value)’
for adding or updating an entry in the map, and
’ lookup(key)’ for retrieving the value stored for ’key’.

Furthermore, two functions are used without giving pseudo-
code implementation:

• merge(Cut c0, bool inv0, Cut c1, bool inv1, int k)
— Returns aCut which is the merge of cuts c0 and c1
(including their associated FTBs) or the “null” cut if
the number of inputs exceedsk. If inv0 or inv1 is true,
the corresponding FTB is inverted before computing
the output FTB.

• strashedReplace(Wire old, Wire new)
— In a structurally hashed, reduced and constant-free
network: replace all uses of the gate pointed to by ’old’
with the gate pointed to by ’new’ and incrementally
update the network to a structurally hashed, reduced
and constant-free state.

5 Experimental Results

The proposed method has been evaluated on 6 real-world
designs from different sources, taken from the regression
test-set for the Cadence’PALLADIUM compiler for hard-
ware emulation. The results of cut-sweeping are compared

against the free SAT-sweeper inside the tool ABC [2]. The
command “fraig” was used in its default mode, which al-
lows the internal SAT-solver to do 100 backtracks while try-
ing to prove a hypothesized equivalence.

The results clearly show a big gap in runtime for these
large designs. The reduction rates for cut-sweeping are un-
surprisingly a bit smaller, but still within range. Tuning
the SAT-sweeper to cope with these large benchmarks may
close the run-time gap a bit; but then again, applying an
equal amount of tender-loving-care to this first implemen-
tation of cut-sweeping may restore the gap.

6 Conclusions and Future Work
For typical designs occurring in the compilation flow of Ca-
dence’PALLADIUM compiler, much of the benefits of SAT-
sweeping can be achieved in a fraction of the time by prov-
ing points equivalent using cut-enumeration. Future work
includes improved implementation and better prioritization
of cuts, especially excluding subsumed cuts.

References

[1] S. Cho, S. Chatterjee, A. Mishchenko, and R. Brayton. Effi-
cient FPGA mapping using priority cuts. InFPGA’07, 2007.

[2] B. L. S. Group. ABC: A system for sequential synthesis and
verification.http://www.eecs.berkeley.edu/˜alanmi/abc/.

[3] A. Kuehlmann. Dynamic transition relation simplification for
bounded property checking. InInternational Conference on
Computer Aided Design (ICCAD-2004). IEEE/ACM, 2004.

[4] A. Kuehlmann and F. Krohm. Equivalence checking using
cuts and heaps. InProceedings of the 34th Design Automation
Conference, pages 263–268, 1997.

[5] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Cut-
less FPGA mapping. InERL Technical Report, EECS Dept.,
UC Berkeley, 2007.

[6] V. Paruthi and A. Kuehlmann. Equivalence checking combin-
ing a structural SAT-solver, BDDs, and simulation.

[7] F. Pigorsch, C. Scholl, and S. Disch. Advanced unbounded
model checking based on AIGs, BDD sweeping, and quanti-
fier scheduling.FMCAD, 0:89–96, 2006.

[8] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-
Vincentelli. SAT sweeping with local observability don’t-
cares. InDAC ’06, New York, NY, USA, 2006. ACM Press.

3

cutEnum(Wire w, Map〈Wire, Cuts〉 cutset, Map〈Cut,Wire〉 unique, int k, int N)
{

Cuts cuts – Empty array; elements added by ’push()’
Cuts ∆0 = cutset.lookup(win0)
Cuts ∆1 = cutset.lookup(win1)

– ENUMERATE CUTS:

cuts.push({w}) – Add singleton cut
forEach (c0, c1) ∈ ∆0 × ∆1 do {

if (|c0| == 1 && nFanouts(win0) < 2) continue – Use only singleton cuts from
if (|c1| == 1 && nFanouts(win1) < 2) continue nodes with multiple fanouts
Cut c = merge(c0, sign(win0), c1, sign(win1), k)
if (c.null()) continue – Resulting cut is wider than k

if (c.size() == 0) – Node is constant
strashedReplace(w, (c.ftb == 0) ? WIRE FALSE : WIRE TRUE)
return

else if (c.size() == 1) – Node is equal to an input
strashedReplace(w, (c.ftb == FTB INVERSE) ? ¬c0 : c0)
return

cuts.push(c)
}
removeDuplicates(cuts)

– LOOK FOR EQUIVALENT NODE:

forEach c ∈ cuts do {
Wire v = unique.lookup(c)
if (v 6= WIRE NULL && notDeleted(v)) – Found the same cut in hash-table

Wire win0 = (c.ftb & 1) ?¬w : w – Normalization for negation
strashedReplace(win0 , v)
return

}

– STORE CUTS:

if (cuts.size() > N) 〈〈 keep the N best cuts according to “cutQuality()”〉〉
cutset.set(w, cuts)
forEach c ∈ cuts do {

Wire v = (c.ftb & 1) ?¬w : w – Normalization for negation
unique.set(c, v)

}
}

Figure 1. Cut-enumeration for one gate.Wire ’w’ points to an AND-gate with inputs win0 and win1 , for which sets of cuts
has already been computed. The above procedure combines these sets to a cut-set for ’w’, and at the same time looks for
equivalences to use for rewriting.

cutEnum(Network network, int k, int N)
{

Map〈Wire,Cuts〉 cutset – default value is the empty set
Map〈Cut,Wire〉 unique – Uniqueness table for cuts

topologicallyForEach w ∈ network do – bottom-up traversal from PIs to POs
if (type(w) == GATETYPE AND)

cutEnum(w, cutset, unique, k, N)
}

Figure 2. Cut-sweeping all nodes.’k’ is the cut-width used, ’N’ the number of cuts kept per node. The network is assumed
to be structurally hashed, reduced and constant-free.

4

