
E�e
tive Prepro
essing in SAT throughVariable and Clause EliminationNiklas E�en and Armin BiereChalmers University of Te
hnology, G�oteborg, Sweden.Johannes Kepler University, Linz, Austria.Abstra
t. Prepro
essing SAT instan
es
an redu
e their size
onsid-erably. We
ombine variable elimination with subsumption and self-subsuming resolution, and show that these te
hniques not only shrinkthe formula further than previous prepro
essing e�orts based on vari-able elimination, but also de
rease runtime of SAT solvers substantiallyfor typi
al industrial SAT problems. We dis
uss
riti
al implementationdetails that make the redu
tion pro
edure fast enough to be pra
ti
al.1 Introdu
tionThe size of CNF formulas is often very large, parti
ularly in the
ontext of formalveri�
ation. In theory, a very large formula may be easy to solve and a smallformula hard. However, in pra
ti
e, it is often observed that the runtime of aSAT solver is very mu
h related to the size of the input formula, at least whenthe formulas stem from the same set of problems.This paper presents new te
hniques whi
h redu
e the size of a CNF formulain order to speed up overall SAT solving time. Our experiments on problemsfrom industrial
ir
uit veri�
ation show large speedups, not only
ompared toplain SAT solving, but also
ompared to related prepro
essing te
hniques [SP℄.Modern SAT solvers use unit propagation and the pure literal rule in a pre-pro
essing phase, as already des
ribed in the original DPLL algorithm [DLL62℄.More sophisti
ated te
hniques fo
us on deriving units, impli
ations and equiv-alent literals [BW,Bra04,LMS,Nov,St�a89℄. Other similar te
hniques have beenused in the
ontext of ATPG, su
h as re
ursive learning [KP℄, or in
ir
uitveri�
ation, in parti
ular and-inverter graphs [KPKG02℄ and BDD-sweeping[KPKG02℄. The latter te
hniques have in
ommon that they allow to restru
ture
ir
uits but do not dire
tly apply to CNF. Our approa
h is orthogonal to thesete
hniques in the sense that it
an be applied in addition to restru
turing, aftera CNF has been produ
ed. Furthermore, from the CNF, individual
lauses
anbe removed, an operation without
orresponden
e in the
ir
uit representation.Prepro
essing in SAT is a trade-o� between the amount of redu
tion a
hievedand invested time. Light weight approa
hes su
h as [LMS℄ fo
us on fast prepro-
essing. Their running time is usually negligible
ompared to the overall solvingtime. On the other side of the spe
trum lie te
hniques whi
h in pra
ti
e take1

onsiderable time. Examples are saturation of hyper binary resolution [BW℄, k-saturation for k � 2 in St�almar
k's method [St�a89℄, or saturation of re
ursivelearning for larger re
ursion depths. These te
hniques
an only be applied if ahuge bene�t is expe
ted|whi
h is appli
ation domain depended|or if a timelimit is enfor
ed.Re
ently, the rule of elimination of atomi
 formulas from [DP60℄, whi
heliminates variables from a CNF by
lause distribution, has been re
onsideredas a basis for symboli
 DPLL in the ZDD based SAT solver ZRES [CS℄, as a wayto eliminate variables in the QBF solver QUANTOR [Bie℄, and, independently inthe prepro
essor NIVER [SP℄. Clause distribution is a light weight prepro
essingte
hnique, as long as a limit on the growth of the
lause data base is enfor
ed.We extend [SP℄ by three new te
hniques: subsumption, self-subsuming res-olution, and variable elimination by substitution. This results in mu
h higherredu
tion rates and faster SAT solving, as we show in our experiments. Thedes
ription of the implementation of NIVER [SP℄ stays on a very high level.We des
ribe two implementation te
hniques for speeding up the pro
ess, basedon (1) restri
ting the set of variables
onsidered for elimination to tou
hed vari-ables, and (2) using signatures for fast subsumption
he
ks. The latter has hasalso been used in [Bie℄, but the fo
us there is QBF, and no experimental resultsfor prepro
essing SAT instan
es are given. The optimizations allow us to keepthe runtime small enough for a light weight approa
h.Finally, we believe that prepro
essing and en
oding are two sides of the same
oin. One way of speeding up SAT solving is to work on sophisti
ated CNF en-
oding algorithms su
h as [Boy92,JS,PG86,Vel℄. We suggest, as an alternative,that the CNF is simpli�ed after its generation, whi
h is less appli
ation domaindependent. From a pragmati
 point of view, it also eases the burden of devel-oping good domain spe
i�
 CNF en
oders if the SAT solver is known to do agood job of redu
ing verbose CNF formulations. Furthermore, our simpli�
ationte
hniques are all resolution based and
an therefore easily be in
orporated in asolver with refutation generation. We leave it to future work to
ompare the twodi�erent approa
hes, parti
ularly sin
e the number of available CNF en
odersand propositional non-CNF problems is
urrently rather small.Generally, our simpli�
ation te
hniques
an be applied in three di�erent ways:(1) during prepro
essing, (2) during SAT solving, e.g. at restart, or (3) betweentwo in
remental SAT problems. We will fo
us on applying simpli�
ation as a pre-pro
essor, although a small study is in
luded of an appli
ation in an in
rementalSAT problem.To summarize, our
ontributions are the following. We extend NIVER [SP℄by subsumption, whi
h was already dis
ussed by one of the authors in the
ontextof QBF [Bie℄. Furthermore, we present two new te
hniques, self-subsuming reso-lution and variable elimination by substitution. Beside a
ompa
t des
ription ofthe prepro
essing algorithm itself we dis
uss two important low-level optimiza-tions. Finally we show the e�e
tiveness of these te
hniques as implemented in
SATELITE on a
omprehensive set of industrial ben
hmarks.2

2 PreliminariesA CNF
onsists of a set of
lauses, where ea
h
lause C is a set of literals. Aliteral is a boolean variable x or its negation x.Given two
lauses C1 = fx; a1; : : : ; ang and C2 = fx; b1; : : : ; bmg the implied
lause C = fa1; : : : ; an; b1; : : : ; bmg is
alled the resolvent of the two original
lauses by performing resolution on the variable x. We write C = C1
C2. Thisnotion
an be lifted to sets of
lauses. Let S1 be a set of
lauses whi
h all
ontainx, S2 a set of
lauses whi
h all
ontain x. Then S1
 S2 is de�ned asS1
 S2 = fC1
 C2 j C1 2 S1; C2 2 S2gThe basi
 simpli�
ation te
hnique in this paper, and also in NIVER [SP℄, follows[DP60℄ and simply eliminates variables. In a given CNF, let Sx be the set of
lauses in whi
h x o

urs, Sx be the set of
lauses in whi
h x o

urs and de�neS = Sx [Sx.The elimination of a variable x in the whole CNF
an be
omputed by pair-wise resolving ea
h
lause in Sx with every
lause in Sx. The produ
ed resolventsS0 = Sx
Sx repla
e the original
lauses S
ontaining x or x, resulting in a satis-�ability equivalent problem. We refer to this pro
edure as elimination by
lausedistribution, and
ount only non-trivial
lauses as part of the result. A
lause istrivial if it
ontains a variable and its negation.In prin
iple, the resolution operator
 should have the resolution variablex as parameter. However, if
lauses
an be resolved with respe
t to di�erentresolution variables, then all the resolvents will be trivial anyhow.3 New Simpli�
ationsIn early experiments and also in the
ontext of QBF [Bie℄ we observed that
lause distribution produ
es many subsumed
lauses. A
lause C1 is said to(synta
ti
ally) subsume C2 if C1 � C2. A subsumed
lause is redundant and
an be dis
arded from the SAT problem. Parti
ularly, a subsumed
lause neverneeds to be part of a resolution proof of unsatis�ability.We also observed that often similar
lauses of a parti
ular kind o

ur: one
lause C2 almost subsumes a
lause C1, ex
ept for one literal x, whi
h, o

urswith the opposite sign in C2. For instan
e, let C1 = fx; a; bg, and C2 = fx; ag,then resolving on x will produ
e C 01 = fa; bg, whi
h subsumes C1. Thus afteradding C 01 to the CNF, we
an remove C1, in essen
e eliminating one literal.In this
ase, we say that C1 is strengthened by self-subsumption using C2. Thissimpli�
ation rule is
alled self-subsuming resolution.As we will show in the experimental se
tion, adding these subsumption te
h-niques to variable elimination through
lause distribution gives huge bene�ts
ompared to [SP℄.If a
ir
uit is en
oded in CNF, typi
ally using the Tseitin transformation[Tse68℄, then many variables are a
tually fun
tionally dependent on other vari-ables, parti
ularly those introdu
ed for gate outputs. In previous work, this in-formation has been used to restri
t the set of de
ision variables in a SAT solver3

to fun
tionally independent variables [GMT,OGMS℄. We use the information tosimplify the CNF, essentially extra
ting gates as in [OGMS℄. Output variablesof gates are fun
tionally dependent on input variables. If the following three
lauses : : : fx; a; bg; fx; ag; fx; bg : : : (1)are part of a CNF then the AND gate x = (a ^ b)
an be extra
ted, showingthat x is fun
tionally dependent. We also
all this equation a de�nition of x.If x has a de�nition and is eliminated by
lause distribution, many redundantresolvents are generated. By using the de�nition these
lauses
an be removedeasily. Let G be the set of
lauses used for extra
ting a gate with output x.Further re
all that Sx is the set of
lauses of S in whi
h x o

urs and similarlyde�ne Gx, and Gx. Then the set S of all
lauses with x or x
an be partitionedinto S = G [R, with R � SnG the set of remaining
lauses not used forextra
ting the gate. From S = (Gx [Rx) [(Gx [Rx) it follows that the set S0of all resolvents
an be partitioned into S0 = S00 [G0 [R0 withS00 = (Rx
Gx) [(Gx
Rx); G0 = Gx
Gx; and R0 = Rx
Rx:Furthermore, we have the following Theorem, whi
h shows that S00 implies G0and R0, allowing S0 to be repla
ed by S00.Theorem. S00 j= G0 [R0The proof follows by �rst noti
ing, as in [GOMS℄, that G0
ontains only trivial
lauses. All the resolvents in R0
an be obtained through several resolution steps(linear in the width of the gate or by just one hyper resolution step [BW℄) from
lauses in S00. Another way to get S00 is to substitute in R all o

urren
es of xby its de�nition (x by a ^ b and x by a ^ b in the example) and then apply thedistributivity law to obtain a
at CNF.As a result, in the elimination of a fun
tional dependent variable the
lausesin G0 and R0 do not have to be added, whi
h always redu
es the number of addedresolvents. We
all this simpli�
ation rule variable elimination by substitution.To
ontinue the example in Eqn. (1) , let S be1fx;
g; 2fx; dg| {z }Rx ; 3fx; a; bg| {z }Gx ; 4fx; ag; 5fx; bg| {z }Gx ; 6fx; e; fg| {z }RxThe resolvents are: 1
4f
; ag; 1
5f
; bg; 2
4fd; ag; 2
5fd; bg; 3
6fa; b; e; fg (S00)3
4fa; b; ag; 3
5fa; b; bg (G0) 1
6f
; e; fg; 2
6fd; e; fg (R0)G0 has only trivial
lauses. Sin
e trivial
lauses are not
ounted, we have jS0j =7 > 5 = jS00j. Repla
ing S with S00 results in a de
rease of the number of
lausesfrom 6 to 5, while the full
lause distribution a
tually results in an in
rease from6 to 7. Also note that the redundant
lauses in R0
an be obtained from S004

through two resolution steps ea
h (a
tually by one hyper resolution step [BW℄):1
6 = (1
4)
 ((1
5)
 (3
6)) and 2
6 = (2
4)
 ((2
5)
 (3
6)) .We also realized that subsumption sometimes removes
lauses whi
h
ouldbe used to extra
t a gate. For instan
e if the
lause C = fa; bg is added to theCNF in Eqn. (1), then the
lause fx; a; bg is removed and no AND gate
anbe extra
ted anymore. However, by one hyper resolution step, or two ordinaryresolution steps, of C with the original two binary
lauses the unit x
an bederived, whi
h, of
ourse, simpli�es the CNF even further. For all
lauses C, wetry to �nd binary
lauses, that, if resolved with C in one hyper resolution stepprodu
e a unit. We
all this simpli�
ation rule hyper-unary-resolution, similarto hyper-binary-resolution of [BW℄.4 ImplementationWe present an implementation that should work for any
lause based SAT solver,in
luding those with an in
remental SAT interfa
e. In that
ontext, the simpli-�
ation
an be applied between the di�erent in
remental SAT instan
es.The te
hniques in this paper aim at simplifying a SAT problem by redu
ingits size. Variable elimination is applied greedily until no more improvement
anbe made to the
lause database by a single elimination. Di�erent notions of\improvement"
an be used, and previous work [SP℄ is fo
used on minimizing thenumber of literal o

urren
es. In our implementation we minimize the number of
lauses. The rationale behind this is that propagation in a SAT solver is roughlyproportional to the number of
lauses, independent of their size.4.1 Tou
hed-listsSubsumption and variable elimination intera
t, su
h that strengthening or re-moving a
lause by (self-) subsumption
an turn the elimination of a variableinto an improvement, and eliminating a variable, whi
h produ
es new
lauses,might give new opportunities for subsumption.In our implementation, subsumption and elimination are alternated until a�xed-point is rea
hed. To make this eÆ
ient, it is important not to loop repeat-edly over all
lauses. Therefore, three sets are maintained, storing informationabout the modi�
ations made to the
lause database:Tou
hed (set of variables). A variable is added to this set if it o

urs in a
lausebeing added, removed, or strengthened. Initially all variables are \tou
hed".Added (set of
lauses). When a
lause is added to the SAT problem (e.g. byvariable elimination), it is also added to this set. Initially all
lauses are
onsidered \added".Strengthened (set of
lauses). When a
lause is strengthened (one literal isremoved, either by self-subsumption or toplevel propagation1) it is added tothis set. Initially the set is empty.1 Unit propagation performed under no assumptions, as opposed to during the sear
h.5

These sets are repeatedly
leared during the simpli�
ation pro
edure des
ribedin Se
t. 4.3, then populated again as new
lauses are produ
ed during variableelimination, and while existing
lauses are removed or strengthened by subsump-tion and self-subsumption. The algorithm terminates with all sets empty. In anin
remental
ontext|although not the fo
us of this paper|we note that new
lauses
an be added between SAT problems, populating Added , and that unitfa
ts learned during the solving of one in
remental SAT instan
e might removeor strengthen
lauses, populating Tou
hed and Strengthened .4.2 SubsumptionThe eÆ
ien
y of subsumption is most important, and is a
hieved by two imple-mentation te
hniques. First, for ea
h
lause a 64-bit signature is stored [Bie℄.The signature abstra
ts the set of literals of a
lause in the following way: Ahash fun
tion h maps literals to numbers 0::63, and the signature of a
lause Cis
al
ulated as the bitwise Or of 2h(p) over its literals p 2 C. Then for ea
hliteral an o

ur list is maintained, pointing to all the
lauses in whi
h the literalo

urs.Now, ba
kward subsumption, that is
he
king if a
lause subsumes (as op-posed to being subsumed by) some other
lause in the database,
an be imple-mented as follows:2�ndSubsumed(Clause C)pi
k the literal p in C with the shortest o

ur listfor ea
h C 0 2 o

ur(p) doif (C 6=C 0 && subset(C, C 0)) { 6= is pointer inequalityadd C 0 to resultreturn resultsubset(Clause C, Clause C 0)if (size(C)�size(C 0)) return Falseif (sig(C) & ~sig(C 0) 6= 0) return Falsereturn result of iterating over C and C 0 in a
omplete (expensive) subset testThis algorithm is very fast and allows ba
kward subsumption to be appliedeagerly to ea
h added or strengthened
lause. We rely on this fa
t in Se
t. 4.3.Given a pro
edure for �nding subsumed
lauses, we
an now de�ne a methodfor using a
lause C to strengthen other
lauses by self-subsumption:selfSubsume(Clause C)for ea
h p 2 C dofor ea
h C 0 subsumed by C[p := p℄ dostrengthen(C 0, p) { remove p from C 02 && denotes logi
al And, & bitwise And, and ~ bitwise negation.6

For the
lause fa; b;
g this method would
all �ndSubsumed() for fa; b;
g, fa; b;
g,fa; b;
g, and strengthen any result returned. It should be noted that the orderof strengthening matters, but is not optimized in our implementation.4.3 The toplevel simpli�
ation methodWe now state the main algorithm. The post-
onditions are: (1) No opportunitiesremain for subsumption or self-subsumption. (2) No improvement
an be madeby eliminating a variable, unless the heuristi

ut-o� is used (see below). (3) Thethree sets Tou
hed , Added , and Strengthened are empty.simplify()do { Subsumption:S0 = fset of
lauses
ontaining a literal o

urring insome
lause in Addedgdo S1 = fset of
lauses
ontaining a literal o

urringnegatively in some
lause in Addedg[Added [Strengthened
lear Added and Strengthenedfor ea
h C 2 S1 do selfSubsume(C)propagateToplevel() { may strengthen/remove
lauseswhile (Strengthened 6= ;)for ea
h C 2 S0 not deleted do subsume(C){ Variable Elimination:do S = Tou
hed ;
lear Tou
hedfor ea
h x 2 S do maybeEliminate(x){ eliminating variables will tou
h other variableswhile (Tou
hed 6= ;)while (Added 6= ;)The method subsume(C) removes any
lause subsumed by C, and similarlyselfSubsume(C) removes a literal from any
lause that may be strengthenedusing C. The method maybeEliminate(x) removes x by
lause distribution orsubstitution if the number of
lauses is redu
ed. Finally, propagateToplevel()removes any satis�ed
lause or false literal permanently from the
lause database,assigning variables and repeating the pro
ess if unit
lauses are produ
ed.In the subsumption phase, two sets are
omputed: S0 for standard subsumption,and S1 for self-subsumption. Self-subsumption is applied �rst as it may rendermore (standard) subsumptions possible.Be
ause ba
kward subsumption is eagerly applied to all added or strength-ened
lauses, the only
andidates for being subsumed are the
lauses of Added .7

Strengthened
lauses
annot be subsumed as they now have fewer literals andwere not subsumed before strengthening. A ne
essary
ondition for C to sub-sume C 0 is that C has at least one literal in
ommon with C 0. This motivatesthe de�nition of S0.Let \original
lause" denote a
lause not in Added or Strengthened . Forself-subsumption (the set S1) any added or strengthened
lause
an be usedto remove literals from an original
lause. Moreover, original
lauses may self-subsume added
lauses, but not strengthened
lauses, sin
e they have alreadybeen
he
ked while still
ontaining more literals. Thus it remains to add to S1the original
lauses that may strengthen a
lause in Added . All the
andidate
lauses have to
ontain one literal p for some p in the added
lauses.4.4 Variable eliminationThe variable elimination pro
edure relies on three readily implemented methods,whi
h we state here without pseudo-
ode:maybeClauseDistribute(x) eliminates x by
lause distribution if the result hasfewer
lauses than the original (after removing trivially satis�ed
lauses).�ndDe�nition(x) returns either x $ p1_p2_ : : :_pn or x $ p1^p2^ : : :^pnor NoDef. Unit information is also dete
ted by hyper-unary-resolution andreturned as x $ True or x $ False. Note that in general there maybe many de�nitions. We use the shortest one and do not extra
t furtherinformation from this.maybeSubstitute(def) takes the de�nition of a fun
tionally dependent variableand substitutes ea
h o

urren
e of the variable by its de�nition, providedthis results in fewer
lauses. Substituting a literal by a disjun
tion is unprob-lemati
; substituting by a
onjun
tion requires dupli
ating the destination
lause for ea
h literal of the
onjun
tion, as explained in Se
t. 3.maybeEliminate(Var x)if (x assigned or has zero o

urren
es) returnif (#o

urs of x and x are both > 10) return { heuristi

ut-o�def = �ndDe�nition(x)if (def 6= NoDef) maybeSubstitute(def)else maybeClauseDistribute(x)if (x was eliminated)propagateToplevel()remove learned
lauses with x { for in
remental SAT onlyIt was observed in an early implementation of the simpli�
ation pro
edure thaton some problems the majority of time was spent on failed attempts to eliminatevariables o

urring frequently in both polarities. This is why these variables areheuristi
ally ex
luded. The last line of the pseudo-
ode is only relevant in anin
remental
ontext; if variable elimination is applied during prepro
essing, nolearned
lauses will exist. 8

4.5 Variable elimination related issuesThe elimination of variables results in a partial model if the problem is satis�able.Clauses removed during variable elimination must therefore be stored and usedto
omplete the model, if the full model is needed. If not, removed
lauses
ansimply be dis
arded.Variable elimination also
auses problems for the in
remental SAT interfa
e.Later extensions of the SAT instan
e might reintrodu
e eliminated variables,rendering the elimination unsound. Bringing ba
k the removed
lauses will solvethe problem, but a simpler solution is to extend the solver interfa
e to let theuser expli
itly prevent the elimination of sele
ted variables.5 Experimental resultsThe te
hniques presented in this paper were implemented in a tool SATELITE.It is downloadable together with the ben
hmarks and the result �les used toprodu
e the tables and diagrams of this se
tion.3 Three SAT solvers were usedin our evaluation: (1) MINISAT v1.13 [ESa℄ with an improved
on
i
t
lauseanalysis [S�or℄; (2) ZCHAFF version \Cha� II"; and (3) BERKMIN v5.61. Theben
hmarks were sele
ted to be relevant for
ir
uit veri�
ation. To get a relevantmeasure for the redu
tion a
hieved by our prepro
essing te
hniques, unit
lauseswere removed by performing a toplevel propagation using MINISAT prior toben
hmarking.For our evaluation, two ben
hmark sets were
reated. The �rst set, referredto as \IBM Problems", is a subset of the huge BMC ben
hmark set made avail-able by E. Zarpas at IBM.4 The ben
hmark set is divided into dire
tories, ea
h
ontaining BMC problems of di�erent lengths generated from the same
ir
uitwith the same spe
i�
ation. Without any prior knowledge of the ben
hmarks,we randomly sele
ted a subset of the dire
tories resulting in 355 problems.The se
ond set, referred to as \Industrial Mix"
ontains a mix of hardwareveri�
ation problems, obtained as follows: The available industrial problems ofthe SAT-2004 Competition were downloaded. Problems
on
erning graph
olor-ing, set
overing and planning problems were removed. Our fo
us is on
ir
uitveri�
ation. We also removed Miroslav Velev's problems be
ause SATELITE ranout of memory on some of them, whi
h
ompli
ated ben
hmarking.5 However, wenote that the problems are already
lausi�ed in a smart way [Vel℄, whi
h leaveslittle room for improvement by our methods. For the CNFs whi
h SATELITE
ould prepro
ess, redu
tion rates of less than 5% were a
hieved, and no measur-able speedup. This supports our hypothesis that our method is an alternative toprodu
ing optimized CNFs dire
tly from the sour
e problem.3 www.
s.
halmers.se/~een/SatELite4 www.haifa.il.ibm.
om/proje
ts/veri�
ation/RB Homepage/bm
ben
hmarks.html5 The o

urren
e lists ne
essary for our prepro
essing double the memory footprint.Although this is not a big issue, Velev's problems are among the largest that today'sSAT solvers
an handle. The
urrent version of SATELITE has not been optimizedfor memory performan
e. 9

Original NIVER SATELITE as NIVER Full SATELITEName var
la lit var
la lit : t var
la lit : t var
la lit : t6pipe 16 395 1157 15 393 1155 : 4.4 15 393 1155 : 2.2 12 323 1018 : 53.0abp1-1-k31 15 48 124 8 34 98 : 0.6 8 33 94 : 0.3 3 18 63 : 1.2barrel9 9 37 102 4 21 66 : 0.5 4 20 65 : 0.5 2 16 87 : 3.3
a
he 10 227 880 2192 130 606 1680 : 20.6 92 417 1146 : 7.9 29 178 748 : 58.6
omb2 32 112 274 20 89 231 : 1.6 20 89 231 : 0.8 3 18 63 : 4.4f2
lk 40 28 80 186 10 44 125 : 1.4 7 32 90 : 0.5 4 25 81 : 1.2�fo8 400 260 708 1602 69 301 859 : 13.6 42 164 451 : 6.5 23 129 446 : 11.2guid-1-k56 99 307 758 45 193 553 : 3.9 44 189 540 : 3.1 23 130 443 : 8.0ibm-03 k80 89 375 973 56 308 887 : 5.5 44 230 661 : 1.9 28 190 629 : 5.8ibm-20 k45 91 373 945 46 281 832 : 6.7 41 250 725 : 2.1 20 156 546 : 7.0ip50 66 215 513 34 148 398 : 5.1 12 50 134 : 1.6 8 43 139 : 4.2longmult15 8 24 59 4 16 46 : 0.3 3 14 39 : 0.1 1 9 28 : 0.4w08 14 120 425 1038 69 324 859 : 7.2 69 324 856 : 3.7 34 220 688 : 15.7Table 1. Size-redu
tion
omparison with NIVER. \var", \
la", \lit" denote the numberof variables,
lauses, and literals in thousands respe
tivly. Times \t" are in se
onds asprovided by the Unix
ommand \time", and in
lude parsing and writing the result �le.\SATELITE as NIVER" uses no subsumption and has the same heuristi
 as NIVERfor variable elimination (enfor
e fewer literals). It shows that SATELITE
an mimi

NIVER well, and that our implementation te
hniques runs faster. The last
olumnshows SATELITE with all redu
tions on, whi
h results in a stri
t improvement in size.Finally, we added 18 satis�able and 18 unsatis�able BMC problems used in[ESb℄, mainly from the Texas'97 ben
hmarks ;6 18 unsatis�able BMC problemsgenerated from the Pi
oJava design7 and 13 liveness problems from SatLib.8The result
ontains 115 CNF �les.Study 1 { Comparing redu
tion rates with NIVER. This study showsthat SATELITE is an improvement over earlier work. We use the same problemset as presented in the NIVER paper [SP℄. The results are shown in Table 1.Study 2 { Redu
tion rates and prepro
essing time. Figure 1 shows thee�e
t of applying prepro
essing in terms of the number of remaining variables,
lauses, and literal o

urren
es. We see that for most problems the number of
lauses drop signi�
antly, as well as the number of literal o

urren
es (with someex
eptions), resulting in smaller CNFs and faster unit propagation.The runtime of the prepro
essing is also plotted in relation to the time ofsolving the original CNF. For problems requiring between 30 se
onds and 30minutes to solve, prepro
essing took less than 1/10th of the total time. Only forsome of the easiest problems did prepro
essing dominate runtime, but never inany really harmful way.Study 3 { Runtime
omparison solving with/without prepro
essing. InFigure 2 we plotted the prepro
essing plus SAT solving time using the strongestversion of our prepro
essing (y-axis) against SAT solving without prepro
essing(x-axis). Although not a
onsistent improvement time-wise, in the big majority6 www-
ad.ee
s.berkeley.edu/Respep/Resear
h/vis/texas-97/7 www.sun.
om/mi
roele
troni
s/
ommunitysour
e/pi
ojava/download.html8 www.
s.ub
.
a/ hoos/SATLIB/Ben
hmarks/SAT/BMC/bm
.tar.gz10

0%

50%

100%

Variable Reduction

ve
ve s

ve s ss
ve s ss ds

0%

50%

100%

Clause Reduction

ve
ve s

ve s ss
ve s ss ds

0%

50%

100%

150%

Literal Reduction

ve
ve s

ve s ss
ve s ss ds

0.1 sec

1 sec

10 sec

100 sec

1000 sec
1800 sec

Preprocessing vs. Solution Time

SAT solving
ve s ss ds

ve s ss
ve s

ve

Fig. 1. Relative Redu
tion and Prepro
essing Time. The plots show the remainingsize of ea
h one of the 115 problems in the Industrial Mix after redu
tionby our prepro
essing te
hniques. The abbreviations are: \ve" variable elimination, \s"subsumption, \ss" self-subsumption, \ds" de�nitional substitution. The redu
tion ismeasured relative to the size of the original CNF after applying unit propagation(= 100%). The
urves show the remaining variables (upper left),
lauses (upper right),and literals (lower left). For all three plots the instan
es on the x-axis are sorted in thesame way. The order is determined by the per
entage of remaining variablesfor the most e�e
tive version of the prepro
essor (the lower
urve in the upperleft plot labelled \ve s ss ds"). Our primary simpli�
ation target, the elimination ofvariables indu
es a simpli�
ation of the number of
lauses in most
ases as well. Thenumber of literals follows more loosely the same trend. These three plots also show thatour new simpli�
ation te
hniques are very e�e
tive
ompared to the approa
h takenby NIVER [SP℄, whi
h
orresponds to the
urves labelled \ve". Often an additionalfa
tor of two in redu
tion
an be a
hieved.The lower right plot shows in logarithmi
 s
ale the absolute time needed for pre-pro
essing in relation to the overall solution time. The upper
urve refers to the timefor solving an instan
e with MINISAT not using prepro
essing (timeout set to 1800se
onds). The remaining �ve
urves show only the time used for prepro
essing alonewith de
reasing e�ort. Prepro
essing time turns out to be negligible
ompared to theoverall solution time in most
ases, even when our most aggressive te
hniques are used.Only for very simple instan
es is it better to run the solver without prepro
essing.11

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

W
ith

 p
re

pr
oc

es
si

ng
 (

se
c)

No preprocessing (sec)

IBM problems

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

W
ith

 p
re

pr
oc

es
si

ng
 (

se
c)

No preprocessing (sec)

Industrial Mix

Fig. 2. Heads-up
omparison, with and without prepro
essing. The graphs show a time
omparison between \SAT solving" and \prepro
essing + SAT solving" (using all re-du
tion te
hniques). A mark below the diagonal means faster total solving time when�rst applying prepro
essing. A dot (�) represents MINISAT, a plus (+) ZCHAFF, and a
ross (�) BERKMIN. A timeout of 1800 se
onds was used, and marks along the edgesrepresent tests whi
h timed out for one of the two exe
utions.of
ases prepro
essing lead to a signi�
ant performan
e in
rease. In parti
ularfor ZCHAFF, the improvement was virtually ex
eptionless.Study 4 { Runtime e�e
t of the di�erent te
hniques. To evaluate the ben-e�t of the di�erent levels of redu
tion, we run all three SAT solvers on all ben
h-marks, both the IBM Problems and the Industrial Mix, with 5 di�erent levelsof optimization: (1) Nothing (original CNF after propagating unit
lauses), (2)only variable elimination, (3) variable elimination plus subsumption, (4) variableelimination, subsumption and self-subsumption, (5) variable elimination usingde�nitional substitution (when possible), subsumption and self-subsumption.The result is plotted in Figure 5. The
urves show that not only are moreproblems solved fast by prepro
essing, but also more problems in total when along timeout is given.Study 5 { In
remental k-indu
tion. In Table 2 and Figure 4, a small studyof applying our redu
tion te
hniques in an in
remental
ontext is presented. Theinternal SAT solver of SATELITE, a less optimized version of MINISAT, allows
SATELITE to be used not only as a prepro
essor, but also as an in
rementalSAT solver. Simpli�
ation is applied between ea
h in
remental SAT problem.Although this is a small study, the preliminary results suggest that our te
h-niques pay o� in an in
remental
ontext too.6 Con
lusionNew simpli�
ation te
hniques were presented together with important imple-mentation details. On a large representative set of industrial ben
hmarks it was12

250

255

260

265

270

275

280

285

290

295

300

0 200 400 600 800 1000 1200 1400 1600 1800

so
lv

ed
 in

st
an

ce
s

timeout seconds

IBM Problems

MiniSat

var elim with defs + subs+ self-subs
var elim + subs+ self-subs

var elim + subs
var elim

(nothing)
60

65

70

75

80

85

90

0 200 400 600 800 1000 1200 1400 1600 1800

so
lv

ed
 in

st
an

ce
s

timeout seconds

Industrial Mix

MiniSat

var elim with defs + subs+ self-subs
var elim + subs+ self-subs

var elim + subs
var elim

(nothing)

190

200

210

220

230

240

250

0 200 400 600 800 1000 1200 1400 1600 1800

so
lv

ed
 in

st
an

ce
s

timeout seconds

IBM Problems

ZChaff

var elim with defs + subs+ self-subs
var elim + subs+ self-subs

var elim + subs
var elim

(nothing)
55

60

65

70

75

80

0 200 400 600 800 1000 1200 1400 1600 1800

so
lv

ed
 in

st
an

ce
s

timeout seconds

Industrial Mix

ZChaff

var elim with defs + subs+ self-subs
var elim + subs+ self-subs

var elim + subs
var elim

(nothing)

210

220

230

240

250

260

0 200 400 600 800 1000 1200 1400 1600 1800

so
lv

ed
 in

st
an

ce
s

timeout seconds

IBM Problems

BerkMin

var elim with defs + subs+ self-subs
var elim + subs+ self-subs

var elim + subs
var elim

(nothing)
55

60

65

70

75

80

85

0 200 400 600 800 1000 1200 1400 1600 1800

so
lv

ed
 in

st
an

ce
s

timeout seconds

Industrial Mix

BerkMin

var elim with defs + subs+ self-subs
var elim + subs+ self-subs

var elim + subs
var elim

(nothing)Fig. 3. Comparing di�erent prepro
essing options using SATELITE.Time in
ludes bothprepro
essing and solving. Even though variable elimination by de�nitional substitutiongives a
onsistent redu
tion
ompared to variable elimination by
lause distribution, itis not a
lear winner in terms of CPU time, but seems to depend on whi
h solver youapply (the solid line vs. the long-dashed line). However, both lines are
learly abovethe \(nothing)"-line, representing no prepro
essing. The addition of self-subsumptionto normal subsumption seems to be a
lear winner (often better, never worse). To getan estimate of the speedup, the graphs
ould be read by �xing a parti
ular number ofsolved instan
es, and see what timeout is required to solve that number of instan
es.On the IBM ben
hmarks, MINISAT requires a timeout of about 250 se
onds to solve275 problems with full prepro
essing, but a timeout of more than 600 se
onds with noprepro
essing. 13

Name Depth Plain Simplifyingvis.prod
ell 12 29 62.7 s (266k) 25.3 s (88k)vis.prod
ell 14 16 7.8 s (124k) 6.4 s (29k)vis.prod
ell 15 23 30.5 s (200k) 14.0 s (56k)vis.prod
ell 17 27 64.5 s (253k) 24.1 s (76k)vis.prod
ell 18 13 7.5 s (114k) 5.0 s (35k)vis.prod
ell 19 22 19.2 s (192k) 12.3 s (55k)vis.prod
ell 23 13 9.5 s (120k) 5.9 s (37k)vis.prod
ell 24 37 120.5 s (319k) 34.3 s (94k)Table 2. Study on k-indu
tion. We modi�ed TIP [ESb℄ to use SATELITE as a ba
k-end and ran the zigzag in
remental indu
tion algorithm on the \prod
ell" problemdistributed with VIS. The table shows the total runtime of ea
h problem in se
onds,omitting examples solved in less than 1 se
ond. Within parenthesis, the number of
lauses of the �nal in
remental SAT instan
e is printed. In the rightmost
olumn, allsimpli�
ations of SATELITE were invoked between ea
h in
remental step. The \depth"is the indu
tion depth needed to prove the property (all properties are true).shown, that they speed up SAT solvers
onsiderably. We also believe that pre-pro
essing te
hniques partially provide a solution to the important problem ofgenerating good CNFs in the appli
ation domain of
ir
uit veri�
ation. As fu-ture work, it would be interesting to
ompare SAT solving time on problems thathave been (1)
lausi�ed in a good way, and (2)
lausi�ed in a naive way, but pro-
essed with SATELITE. We also want to
ombine and
ompare our prepro
essingte
hniques with the orthogonal te
hniques mentioned in the introdu
tion.A
knowledgementsNiklas E�en wants to thank Niklas S�orensson for setting him o� in the dire
tionof using self-subsumption in SAT.Referen
es[Bie℄ A. Biere. Resolve and expand. In Prel. Pro
. SAT'04.[Boy92℄ T. Boy de la Tour. An optimality result for
lause form translation. Journalof Symboli
 Computation, 14, 1992.[Bra04℄ R. Brafman. A simpli�er for propositional formulas with many binary
lauses. IEEE Trans. on Systems, Man, and Cyberneti
s, 34(v1), 2004.[BW℄ F. Ba

hus and J. Winter. E�e
tive prepro
essing with hyper-resolutionand equality redu
tion. In Pro
. SAT'03, volume 2919 of LNCS.[CS℄ P. Chatali
 and L. Simon. ZRes: The old Davis-Putnam pro
edure meetsZBDDs. In Pro
. CADE'00, number 1831 in LNAI.[DLL62℄ M. Davis, G. Logemann, and D. Loveland. A ma
hine program for theoremproving. Comm. of the ACM, 5(7), 1962.[DP60℄ M. Davis and H. Putnam. A
omputing pro
edure for quanti�
ation theory.Journal of the ACM, 7(3), 1960.[ESa℄ N. E�en and N. S�orensson. An extensible SAT solver. In Pro
. SAT'03,volume 2919 of LNCS.[ESb℄ N. E�en and N. S�orensson. Temporal indu
tion by in
remental SAT solving.In Pro
. BMC'03, volume 89(4) of ENTCS.14

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

T
im

e
(s

ec
)

Length

[vis.prodcell_24]

Incremental Induction

plain
simplifying

Fig. 4. Case study on in
remental k-indu
tion. The
urve shows the progress of thetemporal indu
tion algorithm of TIP [ESb℄ running on the hardest example of Table 2.The graph plots the total exe
ution time (y-axis) of all indu
tion steps performed uptoa
ertain length (x-axis). In this parti
ular experiment, ea
h step after length 25 takesmore or less
onstant time.[GMT℄ E. Giun
higlia, M. Maratea, and A. Ta

hella. Dependent and independentvariables for propositional satis�ability. In Pro
. JELIA'02 vol 2424, LNCS.[GOMS℄ �E. Gr�egoire, R. Ostrowski, B. Mazure, and L. Sa��s. Automati
 extra
tionof fun
tional dependen
ies. In Prel. Pro
. SAT'04.[JS℄ P. Ja
kson and D. Sheridan. Clause form
onversions for boolean
ir
uits.In Prel. Pro
. SAT'04.[KP℄ W. Kunz and D. Pradhan. Re
ursive learning: An attra
tive alternative tothe de
ision tree for test generation in digital
ir
uits. In Pro
. ITC'92.[KPKG02℄ A. K�uhlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust boolean rea-soning for equivalen
e
he
king and fun
tional property veri�
ation. IEEETrans. on CAD of Integrated Cir
uits and Systems, 21(12), 2002.[LMS℄ I. Lyn
e and J. Marques-Silva. Probing-based prepro
essing te
hniques forpropositional satis�ability. In Pro
. ICTAI'03.[Nov℄ Y. Novikov. Lo
al sear
h for boolean relations on the basis of unit propa-gation. In Pro
. of DATE'03.[OGMS℄ R. Ostrowski, �E. Gr�egoire, B. Mazure, and L. Sa��s. Re
overing and exploit-ing stru
tural knowledge from CNF formulas. In Pro
. CP'02 LNCS 2470.[PG86℄ D. Plaisted and S. Greenbaum. A stru
ture-preserving
lause form transla-tion. Journal of Symboli
 Computation, 2(3), 1986.[S�or℄ N. S�orensson. Con
i
t
lause simpli�
ation using subsumption reso-lution. (paper in preparation { see also http://www.
s.
halmers.se/-Cs/Resear
h/FormalMethods/MiniSat/MiniSat v1.13 short.ps.gz).[SP℄ S. Subbarayan and D. Pradhan. NiVER: Non in
reasing variable eliminationresolution for prepro
essing SAT instan
es. In Prel. Pro
. SAT'04.[St�a89℄ G. St�almar
k. A system for determining propositional logi
 theorems byapplying values and rules to triplets that are generated from a formula,1989. Swedish Patent NÆ 467 076.[Tse68℄ G. Tseitin. On the
omplexity of derivation in propositional
al
ulus. Stud-ies in Constr. Math. and Math. Logi
, 1968.[Vel℄ M. Velev. EÆ
ient translation of boolean formulas to CNF in in formalveri�
ation of mi
ropro
essors. In Pro
. ASP-DAC'04.15

