
E�etive Preproessing in SAT throughVariable and Clause EliminationNiklas E�en and Armin BiereChalmers University of Tehnology, G�oteborg, Sweden.Johannes Kepler University, Linz, Austria.Abstrat. Preproessing SAT instanes an redue their size onsid-erably. We ombine variable elimination with subsumption and self-subsuming resolution, and show that these tehniques not only shrinkthe formula further than previous preproessing e�orts based on vari-able elimination, but also derease runtime of SAT solvers substantiallyfor typial industrial SAT problems. We disuss ritial implementationdetails that make the redution proedure fast enough to be pratial.1 IntrodutionThe size of CNF formulas is often very large, partiularly in the ontext of formalveri�ation. In theory, a very large formula may be easy to solve and a smallformula hard. However, in pratie, it is often observed that the runtime of aSAT solver is very muh related to the size of the input formula, at least whenthe formulas stem from the same set of problems.This paper presents new tehniques whih redue the size of a CNF formulain order to speed up overall SAT solving time. Our experiments on problemsfrom industrial iruit veri�ation show large speedups, not only ompared toplain SAT solving, but also ompared to related preproessing tehniques [SP℄.Modern SAT solvers use unit propagation and the pure literal rule in a pre-proessing phase, as already desribed in the original DPLL algorithm [DLL62℄.More sophistiated tehniques fous on deriving units, impliations and equiv-alent literals [BW,Bra04,LMS,Nov,St�a89℄. Other similar tehniques have beenused in the ontext of ATPG, suh as reursive learning [KP℄, or in iruitveri�ation, in partiular and-inverter graphs [KPKG02℄ and BDD-sweeping[KPKG02℄. The latter tehniques have in ommon that they allow to restrutureiruits but do not diretly apply to CNF. Our approah is orthogonal to thesetehniques in the sense that it an be applied in addition to restruturing, aftera CNF has been produed. Furthermore, from the CNF, individual lauses anbe removed, an operation without orrespondene in the iruit representation.Preproessing in SAT is a trade-o� between the amount of redution ahievedand invested time. Light weight approahes suh as [LMS℄ fous on fast prepro-essing. Their running time is usually negligible ompared to the overall solvingtime. On the other side of the spetrum lie tehniques whih in pratie take1



onsiderable time. Examples are saturation of hyper binary resolution [BW℄, k-saturation for k � 2 in St�almark's method [St�a89℄, or saturation of reursivelearning for larger reursion depths. These tehniques an only be applied if ahuge bene�t is expeted|whih is appliation domain depended|or if a timelimit is enfored.Reently, the rule of elimination of atomi formulas from [DP60℄, whiheliminates variables from a CNF by lause distribution, has been reonsideredas a basis for symboli DPLL in the ZDD based SAT solver ZRES [CS℄, as a wayto eliminate variables in the QBF solver QUANTOR [Bie℄, and, independently inthe preproessor NIVER [SP℄. Clause distribution is a light weight preproessingtehnique, as long as a limit on the growth of the lause data base is enfored.We extend [SP℄ by three new tehniques: subsumption, self-subsuming res-olution, and variable elimination by substitution. This results in muh higherredution rates and faster SAT solving, as we show in our experiments. Thedesription of the implementation of NIVER [SP℄ stays on a very high level.We desribe two implementation tehniques for speeding up the proess, basedon (1) restriting the set of variables onsidered for elimination to touhed vari-ables, and (2) using signatures for fast subsumption heks. The latter has hasalso been used in [Bie℄, but the fous there is QBF, and no experimental resultsfor preproessing SAT instanes are given. The optimizations allow us to keepthe runtime small enough for a light weight approah.Finally, we believe that preproessing and enoding are two sides of the sameoin. One way of speeding up SAT solving is to work on sophistiated CNF en-oding algorithms suh as [Boy92,JS,PG86,Vel℄. We suggest, as an alternative,that the CNF is simpli�ed after its generation, whih is less appliation domaindependent. From a pragmati point of view, it also eases the burden of devel-oping good domain spei� CNF enoders if the SAT solver is known to do agood job of reduing verbose CNF formulations. Furthermore, our simpli�ationtehniques are all resolution based and an therefore easily be inorporated in asolver with refutation generation. We leave it to future work to ompare the twodi�erent approahes, partiularly sine the number of available CNF enodersand propositional non-CNF problems is urrently rather small.Generally, our simpli�ation tehniques an be applied in three di�erent ways:(1) during preproessing, (2) during SAT solving, e.g. at restart, or (3) betweentwo inremental SAT problems. We will fous on applying simpli�ation as a pre-proessor, although a small study is inluded of an appliation in an inrementalSAT problem.To summarize, our ontributions are the following. We extend NIVER [SP℄by subsumption, whih was already disussed by one of the authors in the ontextof QBF [Bie℄. Furthermore, we present two new tehniques, self-subsuming reso-lution and variable elimination by substitution. Beside a ompat desription ofthe preproessing algorithm itself we disuss two important low-level optimiza-tions. Finally we show the e�etiveness of these tehniques as implemented in
SATELITE on a omprehensive set of industrial benhmarks.2



2 PreliminariesA CNF onsists of a set of lauses, where eah lause C is a set of literals. Aliteral is a boolean variable x or its negation x.Given two lauses C1 = fx; a1; : : : ; ang and C2 = fx; b1; : : : ; bmg the impliedlause C = fa1; : : : ; an; b1; : : : ; bmg is alled the resolvent of the two originallauses by performing resolution on the variable x. We write C = C1
C2. Thisnotion an be lifted to sets of lauses. Let S1 be a set of lauses whih all ontainx, S2 a set of lauses whih all ontain x. Then S1 
 S2 is de�ned asS1 
 S2 = fC1 
 C2 j C1 2 S1; C2 2 S2gThe basi simpli�ation tehnique in this paper, and also in NIVER [SP℄, follows[DP60℄ and simply eliminates variables. In a given CNF, let Sx be the set oflauses in whih x ours, Sx be the set of lauses in whih x ours and de�neS = Sx [ Sx.The elimination of a variable x in the whole CNF an be omputed by pair-wise resolving eah lause in Sx with every lause in Sx. The produed resolventsS0 = Sx
Sx replae the original lauses S ontaining x or x, resulting in a satis-�ability equivalent problem. We refer to this proedure as elimination by lausedistribution, and ount only non-trivial lauses as part of the result. A lause istrivial if it ontains a variable and its negation.In priniple, the resolution operator 
 should have the resolution variablex as parameter. However, if lauses an be resolved with respet to di�erentresolution variables, then all the resolvents will be trivial anyhow.3 New Simpli�ationsIn early experiments and also in the ontext of QBF [Bie℄ we observed thatlause distribution produes many subsumed lauses. A lause C1 is said to(syntatially) subsume C2 if C1 � C2. A subsumed lause is redundant andan be disarded from the SAT problem. Partiularly, a subsumed lause neverneeds to be part of a resolution proof of unsatis�ability.We also observed that often similar lauses of a partiular kind our: onelause C2 almost subsumes a lause C1, exept for one literal x, whih, ourswith the opposite sign in C2. For instane, let C1 = fx; a; bg, and C2 = fx; ag,then resolving on x will produe C 01 = fa; bg, whih subsumes C1. Thus afteradding C 01 to the CNF, we an remove C1, in essene eliminating one literal.In this ase, we say that C1 is strengthened by self-subsumption using C2. Thissimpli�ation rule is alled self-subsuming resolution.As we will show in the experimental setion, adding these subsumption teh-niques to variable elimination through lause distribution gives huge bene�tsompared to [SP℄.If a iruit is enoded in CNF, typially using the Tseitin transformation[Tse68℄, then many variables are atually funtionally dependent on other vari-ables, partiularly those introdued for gate outputs. In previous work, this in-formation has been used to restrit the set of deision variables in a SAT solver3



to funtionally independent variables [GMT,OGMS℄. We use the information tosimplify the CNF, essentially extrating gates as in [OGMS℄. Output variablesof gates are funtionally dependent on input variables. If the following threelauses : : : fx; a; bg; fx; ag; fx; bg : : : (1)are part of a CNF then the AND gate x = (a ^ b) an be extrated, showingthat x is funtionally dependent. We also all this equation a de�nition of x.If x has a de�nition and is eliminated by lause distribution, many redundantresolvents are generated. By using the de�nition these lauses an be removedeasily. Let G be the set of lauses used for extrating a gate with output x.Further reall that Sx is the set of lauses of S in whih x ours and similarlyde�ne Gx, and Gx. Then the set S of all lauses with x or x an be partitionedinto S = G [ R, with R � SnG the set of remaining lauses not used forextrating the gate. From S = (Gx [ Rx) [ (Gx [ Rx) it follows that the set S0of all resolvents an be partitioned into S0 = S00 [G0 [ R0 withS00 = (Rx 
Gx) [ (Gx 
Rx); G0 = Gx 
Gx; and R0 = Rx 
Rx:Furthermore, we have the following Theorem, whih shows that S00 implies G0and R0, allowing S0 to be replaed by S00.Theorem. S00 j= G0 [ R0The proof follows by �rst notiing, as in [GOMS℄, that G0 ontains only triviallauses. All the resolvents in R0 an be obtained through several resolution steps(linear in the width of the gate or by just one hyper resolution step [BW℄) fromlauses in S00. Another way to get S00 is to substitute in R all ourrenes of xby its de�nition (x by a ^ b and x by a ^ b in the example) and then apply thedistributivity law to obtain a at CNF.As a result, in the elimination of a funtional dependent variable the lausesin G0 and R0 do not have to be added, whih always redues the number of addedresolvents. We all this simpli�ation rule variable elimination by substitution.To ontinue the example in Eqn. (1) , let S be1fx; g; 2fx; dg| {z }Rx ; 3fx; a; bg| {z }Gx ; 4fx; ag; 5fx; bg| {z }Gx ; 6fx; e; fg| {z }RxThe resolvents are: 1
4f; ag; 1
5f; bg; 2
4fd; ag; 2
5fd; bg; 3
6fa; b; e; fg (S00)3
4fa; b; ag; 3
5fa; b; bg (G0) 1
6f; e; fg; 2
6fd; e; fg (R0)G0 has only trivial lauses. Sine trivial lauses are not ounted, we have jS0j =7 > 5 = jS00j. Replaing S with S00 results in a derease of the number of lausesfrom 6 to 5, while the full lause distribution atually results in an inrease from6 to 7. Also note that the redundant lauses in R0 an be obtained from S004



through two resolution steps eah (atually by one hyper resolution step [BW℄):1
6 = (1
4)
 ((1
5)
 (3
6)) and 2
6 = (2
4)
 ((2
5)
 (3
6)) .We also realized that subsumption sometimes removes lauses whih ouldbe used to extrat a gate. For instane if the lause C = fa; bg is added to theCNF in Eqn. (1), then the lause fx; a; bg is removed and no AND gate anbe extrated anymore. However, by one hyper resolution step, or two ordinaryresolution steps, of C with the original two binary lauses the unit x an bederived, whih, of ourse, simpli�es the CNF even further. For all lauses C, wetry to �nd binary lauses, that, if resolved with C in one hyper resolution stepprodue a unit. We all this simpli�ation rule hyper-unary-resolution, similarto hyper-binary-resolution of [BW℄.4 ImplementationWe present an implementation that should work for any lause based SAT solver,inluding those with an inremental SAT interfae. In that ontext, the simpli-�ation an be applied between the di�erent inremental SAT instanes.The tehniques in this paper aim at simplifying a SAT problem by reduingits size. Variable elimination is applied greedily until no more improvement anbe made to the lause database by a single elimination. Di�erent notions of\improvement" an be used, and previous work [SP℄ is foused on minimizing thenumber of literal ourrenes. In our implementation we minimize the number oflauses. The rationale behind this is that propagation in a SAT solver is roughlyproportional to the number of lauses, independent of their size.4.1 Touhed-listsSubsumption and variable elimination interat, suh that strengthening or re-moving a lause by (self-) subsumption an turn the elimination of a variableinto an improvement, and eliminating a variable, whih produes new lauses,might give new opportunities for subsumption.In our implementation, subsumption and elimination are alternated until a�xed-point is reahed. To make this eÆient, it is important not to loop repeat-edly over all lauses. Therefore, three sets are maintained, storing informationabout the modi�ations made to the lause database:Touhed (set of variables). A variable is added to this set if it ours in a lausebeing added, removed, or strengthened. Initially all variables are \touhed".Added (set of lauses). When a lause is added to the SAT problem (e.g. byvariable elimination), it is also added to this set. Initially all lauses areonsidered \added".Strengthened (set of lauses). When a lause is strengthened (one literal isremoved, either by self-subsumption or toplevel propagation1) it is added tothis set. Initially the set is empty.1 Unit propagation performed under no assumptions, as opposed to during the searh.5



These sets are repeatedly leared during the simpli�ation proedure desribedin Set. 4.3, then populated again as new lauses are produed during variableelimination, and while existing lauses are removed or strengthened by subsump-tion and self-subsumption. The algorithm terminates with all sets empty. In aninremental ontext|although not the fous of this paper|we note that newlauses an be added between SAT problems, populating Added , and that unitfats learned during the solving of one inremental SAT instane might removeor strengthen lauses, populating Touhed and Strengthened .4.2 SubsumptionThe eÆieny of subsumption is most important, and is ahieved by two imple-mentation tehniques. First, for eah lause a 64-bit signature is stored [Bie℄.The signature abstrats the set of literals of a lause in the following way: Ahash funtion h maps literals to numbers 0::63, and the signature of a lause Cis alulated as the bitwise Or of 2h(p) over its literals p 2 C. Then for eahliteral an our list is maintained, pointing to all the lauses in whih the literalours.Now, bakward subsumption, that is heking if a lause subsumes (as op-posed to being subsumed by) some other lause in the database, an be imple-mented as follows:2�ndSubsumed(Clause C)pik the literal p in C with the shortest our listfor eah C 0 2 our(p) doif (C 6=C 0 && subset(C, C 0)) { 6= is pointer inequalityadd C 0 to resultreturn resultsubset(Clause C, Clause C 0)if (size(C)�size(C 0)) return Falseif (sig(C) & ~sig(C 0) 6= 0) return Falsereturn result of iterating over C and C 0 in aomplete (expensive) subset testThis algorithm is very fast and allows bakward subsumption to be appliedeagerly to eah added or strengthened lause. We rely on this fat in Set. 4.3.Given a proedure for �nding subsumed lauses, we an now de�ne a methodfor using a lause C to strengthen other lauses by self-subsumption:selfSubsume(Clause C)for eah p 2 C dofor eah C 0 subsumed by C[p := p℄ dostrengthen(C 0, p) { remove p from C 02 && denotes logial And, & bitwise And, and ~ bitwise negation.6



For the lause fa; b; g this method would all �ndSubsumed() for fa; b; g, fa; b; g,fa; b; g, and strengthen any result returned. It should be noted that the orderof strengthening matters, but is not optimized in our implementation.4.3 The toplevel simpli�ation methodWe now state the main algorithm. The post-onditions are: (1) No opportunitiesremain for subsumption or self-subsumption. (2) No improvement an be madeby eliminating a variable, unless the heuristi ut-o� is used (see below). (3) Thethree sets Touhed , Added , and Strengthened are empty.simplify()do { Subsumption:S0 = fset of lauses ontaining a literal ourring insome lause in Addedgdo S1 = fset of lauses ontaining a literal ourringnegatively in some lause in Addedg[ Added [ Strengthenedlear Added and Strengthenedfor eah C 2 S1 do selfSubsume(C)propagateToplevel() { may strengthen/remove lauseswhile (Strengthened 6= ;)for eah C 2 S0 not deleted do subsume(C){ Variable Elimination:do S = Touhed ; lear Touhedfor eah x 2 S do maybeEliminate(x){ eliminating variables will touh other variableswhile (Touhed 6= ;)while (Added 6= ;)The method subsume(C) removes any lause subsumed by C, and similarlyselfSubsume(C) removes a literal from any lause that may be strengthenedusing C. The method maybeEliminate(x) removes x by lause distribution orsubstitution if the number of lauses is redued. Finally, propagateToplevel()removes any satis�ed lause or false literal permanently from the lause database,assigning variables and repeating the proess if unit lauses are produed.In the subsumption phase, two sets are omputed: S0 for standard subsumption,and S1 for self-subsumption. Self-subsumption is applied �rst as it may rendermore (standard) subsumptions possible.Beause bakward subsumption is eagerly applied to all added or strength-ened lauses, the only andidates for being subsumed are the lauses of Added .7



Strengthened lauses annot be subsumed as they now have fewer literals andwere not subsumed before strengthening. A neessary ondition for C to sub-sume C 0 is that C has at least one literal in ommon with C 0. This motivatesthe de�nition of S0.Let \original lause" denote a lause not in Added or Strengthened . Forself-subsumption (the set S1) any added or strengthened lause an be usedto remove literals from an original lause. Moreover, original lauses may self-subsume added lauses, but not strengthened lauses, sine they have alreadybeen heked while still ontaining more literals. Thus it remains to add to S1the original lauses that may strengthen a lause in Added . All the andidatelauses have to ontain one literal p for some p in the added lauses.4.4 Variable eliminationThe variable elimination proedure relies on three readily implemented methods,whih we state here without pseudo-ode:maybeClauseDistribute(x) eliminates x by lause distribution if the result hasfewer lauses than the original (after removing trivially satis�ed lauses).�ndDe�nition(x) returns either x $ p1_p2_ : : :_pn or x $ p1^p2^ : : :^pnor NoDef. Unit information is also deteted by hyper-unary-resolution andreturned as x $ True or x $ False. Note that in general there maybe many de�nitions. We use the shortest one and do not extrat furtherinformation from this.maybeSubstitute(def ) takes the de�nition of a funtionally dependent variableand substitutes eah ourrene of the variable by its de�nition, providedthis results in fewer lauses. Substituting a literal by a disjuntion is unprob-lemati; substituting by a onjuntion requires dupliating the destinationlause for eah literal of the onjuntion, as explained in Set. 3.maybeEliminate(Var x)if (x assigned or has zero ourrenes) returnif (#ours of x and x are both > 10) return { heuristi ut-o�def = �ndDe�nition(x)if (def 6= NoDef) maybeSubstitute(def )else maybeClauseDistribute(x)if (x was eliminated)propagateToplevel()remove learned lauses with x { for inremental SAT onlyIt was observed in an early implementation of the simpli�ation proedure thaton some problems the majority of time was spent on failed attempts to eliminatevariables ourring frequently in both polarities. This is why these variables areheuristially exluded. The last line of the pseudo-ode is only relevant in aninremental ontext; if variable elimination is applied during preproessing, nolearned lauses will exist. 8



4.5 Variable elimination related issuesThe elimination of variables results in a partial model if the problem is satis�able.Clauses removed during variable elimination must therefore be stored and usedto omplete the model, if the full model is needed. If not, removed lauses ansimply be disarded.Variable elimination also auses problems for the inremental SAT interfae.Later extensions of the SAT instane might reintrodue eliminated variables,rendering the elimination unsound. Bringing bak the removed lauses will solvethe problem, but a simpler solution is to extend the solver interfae to let theuser expliitly prevent the elimination of seleted variables.5 Experimental resultsThe tehniques presented in this paper were implemented in a tool SATELITE.It is downloadable together with the benhmarks and the result �les used toprodue the tables and diagrams of this setion.3 Three SAT solvers were usedin our evaluation: (1) MINISAT v1.13 [ESa℄ with an improved onit lauseanalysis [S�or℄; (2) ZCHAFF version \Cha� II"; and (3) BERKMIN v5.61. Thebenhmarks were seleted to be relevant for iruit veri�ation. To get a relevantmeasure for the redution ahieved by our preproessing tehniques, unit lauseswere removed by performing a toplevel propagation using MINISAT prior tobenhmarking.For our evaluation, two benhmark sets were reated. The �rst set, referredto as \IBM Problems", is a subset of the huge BMC benhmark set made avail-able by E. Zarpas at IBM.4 The benhmark set is divided into diretories, eahontaining BMC problems of di�erent lengths generated from the same iruitwith the same spei�ation. Without any prior knowledge of the benhmarks,we randomly seleted a subset of the diretories resulting in 355 problems.The seond set, referred to as \Industrial Mix" ontains a mix of hardwareveri�ation problems, obtained as follows: The available industrial problems ofthe SAT-2004 Competition were downloaded. Problems onerning graph olor-ing, set overing and planning problems were removed. Our fous is on iruitveri�ation. We also removed Miroslav Velev's problems beause SATELITE ranout of memory on some of them, whih ompliated benhmarking.5 However, wenote that the problems are already lausi�ed in a smart way [Vel℄, whih leaveslittle room for improvement by our methods. For the CNFs whih SATELITEould preproess, redution rates of less than 5% were ahieved, and no measur-able speedup. This supports our hypothesis that our method is an alternative toproduing optimized CNFs diretly from the soure problem.3 www.s.halmers.se/~een/SatELite4 www.haifa.il.ibm.om/projets/veri�ation/RB Homepage/bmbenhmarks.html5 The ourrene lists neessary for our preproessing double the memory footprint.Although this is not a big issue, Velev's problems are among the largest that today'sSAT solvers an handle. The urrent version of SATELITE has not been optimizedfor memory performane. 9



Original NIVER SATELITE as NIVER Full SATELITEName var la lit var la lit : t var la lit : t var la lit : t6pipe 16 395 1157 15 393 1155 : 4.4 15 393 1155 : 2.2 12 323 1018 : 53.0abp1-1-k31 15 48 124 8 34 98 : 0.6 8 33 94 : 0.3 3 18 63 : 1.2barrel9 9 37 102 4 21 66 : 0.5 4 20 65 : 0.5 2 16 87 : 3.3ahe 10 227 880 2192 130 606 1680 : 20.6 92 417 1146 : 7.9 29 178 748 : 58.6omb2 32 112 274 20 89 231 : 1.6 20 89 231 : 0.8 3 18 63 : 4.4f2lk 40 28 80 186 10 44 125 : 1.4 7 32 90 : 0.5 4 25 81 : 1.2�fo8 400 260 708 1602 69 301 859 : 13.6 42 164 451 : 6.5 23 129 446 : 11.2guid-1-k56 99 307 758 45 193 553 : 3.9 44 189 540 : 3.1 23 130 443 : 8.0ibm-03 k80 89 375 973 56 308 887 : 5.5 44 230 661 : 1.9 28 190 629 : 5.8ibm-20 k45 91 373 945 46 281 832 : 6.7 41 250 725 : 2.1 20 156 546 : 7.0ip50 66 215 513 34 148 398 : 5.1 12 50 134 : 1.6 8 43 139 : 4.2longmult15 8 24 59 4 16 46 : 0.3 3 14 39 : 0.1 1 9 28 : 0.4w08 14 120 425 1038 69 324 859 : 7.2 69 324 856 : 3.7 34 220 688 : 15.7Table 1. Size-redution omparison with NIVER. \var", \la", \lit" denote the numberof variables, lauses, and literals in thousands respetivly. Times \t" are in seonds asprovided by the Unix ommand \time", and inlude parsing and writing the result �le.\SATELITE as NIVER" uses no subsumption and has the same heuristi as NIVERfor variable elimination (enfore fewer literals). It shows that SATELITE an mimi
NIVER well, and that our implementation tehniques runs faster. The last olumnshows SATELITE with all redutions on, whih results in a strit improvement in size.Finally, we added 18 satis�able and 18 unsatis�able BMC problems used in[ESb℄, mainly from the Texas'97 benhmarks ;6 18 unsatis�able BMC problemsgenerated from the PioJava design7 and 13 liveness problems from SatLib.8The result ontains 115 CNF �les.Study 1 { Comparing redution rates with NIVER. This study showsthat SATELITE is an improvement over earlier work. We use the same problemset as presented in the NIVER paper [SP℄. The results are shown in Table 1.Study 2 { Redution rates and preproessing time. Figure 1 shows thee�et of applying preproessing in terms of the number of remaining variables,lauses, and literal ourrenes. We see that for most problems the number oflauses drop signi�antly, as well as the number of literal ourrenes (with someexeptions), resulting in smaller CNFs and faster unit propagation.The runtime of the preproessing is also plotted in relation to the time ofsolving the original CNF. For problems requiring between 30 seonds and 30minutes to solve, preproessing took less than 1/10th of the total time. Only forsome of the easiest problems did preproessing dominate runtime, but never inany really harmful way.Study 3 { Runtime omparison solving with/without preproessing. InFigure 2 we plotted the preproessing plus SAT solving time using the strongestversion of our preproessing (y-axis) against SAT solving without preproessing(x-axis). Although not a onsistent improvement time-wise, in the big majority6 www-ad.ees.berkeley.edu/Respep/Researh/vis/texas-97/7 www.sun.om/miroeletronis/ommunitysoure/piojava/download.html8 www.s.ub.a/ hoos/SATLIB/Benhmarks/SAT/BMC/bm.tar.gz10
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Fig. 1. Relative Redution and Preproessing Time. The plots show the remainingsize of eah one of the 115 problems in the Industrial Mix after redutionby our preproessing tehniques. The abbreviations are: \ve" variable elimination, \s"subsumption, \ss" self-subsumption, \ds" de�nitional substitution. The redution ismeasured relative to the size of the original CNF after applying unit propagation(= 100%). The urves show the remaining variables (upper left), lauses (upper right),and literals (lower left). For all three plots the instanes on the x-axis are sorted in thesame way. The order is determined by the perentage of remaining variablesfor the most e�etive version of the preproessor (the lower urve in the upperleft plot labelled \ve s ss ds"). Our primary simpli�ation target, the elimination ofvariables indues a simpli�ation of the number of lauses in most ases as well. Thenumber of literals follows more loosely the same trend. These three plots also show thatour new simpli�ation tehniques are very e�etive ompared to the approah takenby NIVER [SP℄, whih orresponds to the urves labelled \ve". Often an additionalfator of two in redution an be ahieved.The lower right plot shows in logarithmi sale the absolute time needed for pre-proessing in relation to the overall solution time. The upper urve refers to the timefor solving an instane with MINISAT not using preproessing (timeout set to 1800seonds). The remaining �ve urves show only the time used for preproessing alonewith dereasing e�ort. Preproessing time turns out to be negligible ompared to theoverall solution time in most ases, even when our most aggressive tehniques are used.Only for very simple instanes is it better to run the solver without preproessing.11
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Fig. 2. Heads-up omparison, with and without preproessing. The graphs show a timeomparison between \SAT solving" and \preproessing + SAT solving" (using all re-dution tehniques). A mark below the diagonal means faster total solving time when�rst applying preproessing. A dot (�) represents MINISAT, a plus (+) ZCHAFF, and aross (�) BERKMIN. A timeout of 1800 seonds was used, and marks along the edgesrepresent tests whih timed out for one of the two exeutions.of ases preproessing lead to a signi�ant performane inrease. In partiularfor ZCHAFF, the improvement was virtually exeptionless.Study 4 { Runtime e�et of the di�erent tehniques. To evaluate the ben-e�t of the di�erent levels of redution, we run all three SAT solvers on all benh-marks, both the IBM Problems and the Industrial Mix, with 5 di�erent levelsof optimization: (1) Nothing (original CNF after propagating unit lauses), (2)only variable elimination, (3) variable elimination plus subsumption, (4) variableelimination, subsumption and self-subsumption, (5) variable elimination usingde�nitional substitution (when possible), subsumption and self-subsumption.The result is plotted in Figure 5. The urves show that not only are moreproblems solved fast by preproessing, but also more problems in total when along timeout is given.Study 5 { Inremental k-indution. In Table 2 and Figure 4, a small studyof applying our redution tehniques in an inremental ontext is presented. Theinternal SAT solver of SATELITE, a less optimized version of MINISAT, allows
SATELITE to be used not only as a preproessor, but also as an inrementalSAT solver. Simpli�ation is applied between eah inremental SAT problem.Although this is a small study, the preliminary results suggest that our teh-niques pay o� in an inremental ontext too.6 ConlusionNew simpli�ation tehniques were presented together with important imple-mentation details. On a large representative set of industrial benhmarks it was12
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Name Depth Plain Simplifyingvis.prodell 12 29 62.7 s (266k) 25.3 s (88k)vis.prodell 14 16 7.8 s (124k) 6.4 s (29k)vis.prodell 15 23 30.5 s (200k) 14.0 s (56k)vis.prodell 17 27 64.5 s (253k) 24.1 s (76k)vis.prodell 18 13 7.5 s (114k) 5.0 s (35k)vis.prodell 19 22 19.2 s (192k) 12.3 s (55k)vis.prodell 23 13 9.5 s (120k) 5.9 s (37k)vis.prodell 24 37 120.5 s (319k) 34.3 s (94k)Table 2. Study on k-indution. We modi�ed TIP [ESb℄ to use SATELITE as a bak-end and ran the zigzag inremental indution algorithm on the \prodell" problemdistributed with VIS. The table shows the total runtime of eah problem in seonds,omitting examples solved in less than 1 seond. Within parenthesis, the number oflauses of the �nal inremental SAT instane is printed. In the rightmost olumn, allsimpli�ations of SATELITE were invoked between eah inremental step. The \depth"is the indution depth needed to prove the property (all properties are true).shown, that they speed up SAT solvers onsiderably. We also believe that pre-proessing tehniques partially provide a solution to the important problem ofgenerating good CNFs in the appliation domain of iruit veri�ation. As fu-ture work, it would be interesting to ompare SAT solving time on problems thathave been (1) lausi�ed in a good way, and (2) lausi�ed in a naive way, but pro-essed with SATELITE. We also want to ombine and ompare our preproessingtehniques with the orthogonal tehniques mentioned in the introdution.AknowledgementsNiklas E�en wants to thank Niklas S�orensson for setting him o� in the diretionof using self-subsumption in SAT.Referenes[Bie℄ A. Biere. Resolve and expand. In Prel. Pro. SAT'04.[Boy92℄ T. Boy de la Tour. An optimality result for lause form translation. Journalof Symboli Computation, 14, 1992.[Bra04℄ R. Brafman. A simpli�er for propositional formulas with many binarylauses. IEEE Trans. on Systems, Man, and Cybernetis, 34(v1), 2004.[BW℄ F. Bahus and J. Winter. E�etive preproessing with hyper-resolutionand equality redution. In Pro. SAT'03, volume 2919 of LNCS.[CS℄ P. Chatali and L. Simon. ZRes: The old Davis-Putnam proedure meetsZBDDs. In Pro. CADE'00, number 1831 in LNAI.[DLL62℄ M. Davis, G. Logemann, and D. Loveland. A mahine program for theoremproving. Comm. of the ACM, 5(7), 1962.[DP60℄ M. Davis and H. Putnam. A omputing proedure for quanti�ation theory.Journal of the ACM, 7(3), 1960.[ESa℄ N. E�en and N. S�orensson. An extensible SAT solver. In Pro. SAT'03,volume 2919 of LNCS.[ESb℄ N. E�en and N. S�orensson. Temporal indution by inremental SAT solving.In Pro. BMC'03, volume 89(4) of ENTCS.14
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