
11

Effective Preprocessing in SAT through Effective Preprocessing in SAT through 
Variable and Clause EliminationVariable and Clause Elimination

Niklas EénNiklas Eén
Cadence Berkeley LaboratoriesCadence Berkeley Laboratories

Berkeley, USABerkeley, USA

Armin BiereArmin Biere
JJohannes Kepler University ohannes Kepler University 

Linz, AustriaLinz, Austria

for for  SAT 2005 SAT 2005
The Eighth International Conference onThe Eighth International Conference on

Theory and Applications of Satisfiability TestingTheory and Applications of Satisfiability Testing

June 20, 2005June 20, 2005



22

Problem Statement: Problem Statement: 
Clausification of NetlistsClausification of Netlists

● Typically represented using And-Inverter graphs.Typically represented using And-Inverter graphs.
● We can write a good clausifier... [JS04,Vel05]We can write a good clausifier... [JS04,Vel05]
● Can we “recover” after we translated to clauses?Can we “recover” after we translated to clauses?
● Yes, do preprocessing in the SAT solver! Yes, do preprocessing in the SAT solver! 
– Global view Global view ⇒⇒ Better results Better results
– More generalMore general
– Saves the Saves the useruser of the SAT solver the trouble of  of the SAT solver the trouble of 

writing a good clausifier (to some extent).writing a good clausifier (to some extent).



33

Purpose of PreprocessingPurpose of Preprocessing
● Slim down the CNF to a core without “obvious” Slim down the CNF to a core without “obvious” 

redundancies, such as:redundancies, such as:
– ““Meaningless” internal variables.Meaningless” internal variables.

­ Big conjunctions: Big conjunctions:  a & a &  (b & (c & d))(b & (c & d))
­ MUXes:MUXes:                               (s & x) | (~s & y) (s & x) | (~s & y)

– Equivalent literals.Equivalent literals.
­ Binary clauses:Binary clauses: (x  (x →→ y), (y  y), (y → → x)x)

– Unpropagated shallow facts (generalize BCP).Unpropagated shallow facts (generalize BCP).
Example.Example.  Hyper-unary-resolution:Hyper-unary-resolution:

­ Clauses: Clauses: (a | b | c), (a (a | b | c), (a →→ x), (b  x), (b →→ x), (c  x), (c →→ x) x)



44

The Preprocessor SThe Preprocessor SATATELELITEITE

● We implement three basic techniques:We implement three basic techniques:
– Variable elimination by resolution.Variable elimination by resolution.

Takes care of wasteful internal variablesTakes care of wasteful internal variables
(and equivalent literals*).(and equivalent literals*).

– Fast subsumption.  Fast subsumption.  C C ⊆⊆  C'   (C'   (backward:backward: C C
newnew  ⊆ ⊆ CC

oldold))
Removes “trash” produced by the variableRemoves “trash” produced by the variable
elimination (important!).elimination (important!).

– Self-subsumption. Self-subsumption.  (x | A)  (x | A) ⊗⊗xx (~x | A | B) = (A | B) (~x | A | B) = (A | B)
Gives a generalization of BCP (Niklas Sörensson)Gives a generalization of BCP (Niklas Sörensson)

{˜x, a}   {x, ˜a, ˜b}
{˜x, b}  ⊗ {x, d, ˜c, e}
{˜x, c}   {x, a, ˜c, e}
                                                              

{a, ˜a, ˜b} {b, a, ˜c, e}
{a, d, ˜c, e} {c, ˜a, ˜b}
{a, ˜c, e} {c, d, ˜c, e}
{b, ˜a, ˜b} {c, a, ˜c, e}
{b, d, ˜c, e}



55

Outline of AlgorithmOutline of Algorithm

Repeat until no more changes:Repeat until no more changes:
– selfSubsume()selfSubsume()
– subsume()subsume()
– eliminateVars()eliminateVars()

● Backward subsumption and BCP applied eagerly.Backward subsumption and BCP applied eagerly.
● Made efficient by tracking clauses that are...Made efficient by tracking clauses that are...
– strengthenedstrengthened  by by selfSubsume() selfSubsume() or BCP.or BCP.
– removed by subsumption or BCP.removed by subsumption or BCP.
– added or removed by added or removed by eliminateVareliminateVars().s().

A clause may become unit A clause may become unit 
⇒⇒ top-level unit propagation.top-level unit propagation.

Eliminate “x” if leads Eliminate “x” if leads 
to fewer clauses.to fewer clauses.



66

Details on Variable Details on Variable 
EliminationElimination

● Try variable Try variable xx where  where #occur#occur((xx) ) ××  #occur#occur(~(~xx))  is is 
smallest first.smallest first.

● If If bothboth  ##occuroccur((xx) ) andand # #occuroccur(~(~xx) ) are >10, skip. are >10, skip. 
● For pragmatic reasons, detect definitions:For pragmatic reasons, detect definitions:
– Clauses:Clauses: (t  (t →→ x),  (t  x),  (t →→ y), (x & y  y), (x & y →→ t)  t) 

meanmean “t  “t ↔ ↔ x & y” x & y” ⇒⇒ eliminate  eliminate t t by inlining.by inlining.
– Natural to do Natural to do hyper-unary-resolutionhyper-unary-resolution during this step. during this step.



77

Details on SubsumptionDetails on Subsumption
● Maintain Maintain occursoccurs-lists.   -lists.   [Biere04][Biere04]

­ occur(p)occur(p) is the set of clauses where  is the set of clauses where pp occurs. occurs.
● For each clause, store a 64-bit signature.For each clause, store a 64-bit signature.

­ Hash each literal to a number Hash each literal to a number 0..630..63. Take bitwise OR.. Take bitwise OR.

subset(Clause C, Clause C')
if (size(C) > size(C')) return FALSE
if (sig(C) & ~sig(C')) return FALSE
return result of complete (expensive) subset test

findSubsumed(Clause C)
pick the literal p in C with the shortest occur list
for each C' ∈ occur(p) do

if (C ≠ C' && subset(C, C' ))
add C' to result

return result



88

Demo!Demo!

    module main()
    {
        num : array 4..0 of boolean;
    
        init (num) := 6;
        next(num) := (~num[0]) ? (num >> 1) : (num * 3 + 1);  
    
        test : assert G (num ~= 1);
    }

SMV file

● Small BMC problem unrolled 4 time-frames.Small BMC problem unrolled 4 time-frames.
● Resulting boolean circuit clausified by Resulting boolean circuit clausified by 

introducing one variable per binary Aintroducing one variable per binary ANDND/X/XOROR..



99

Missing variables in model?Missing variables in model?
● We need to extend the satisfying assignment. We need to extend the satisfying assignment. 

This is cheap!This is cheap!
● In an incremental SAT solver, we need to In an incremental SAT solver, we need to 

“freeze” variables.“freeze” variables.



1010

Experimental ResultsExperimental Results
● MMINIINISSATAT  solved 376 industrial problems in 1solved 376 industrial problems in 1stst-stage.-stage.

SSATATELELITEITE  ++ M MINIINISSATAT  solved 402 problems.solved 402 problems.
● We investigate:We investigate:
– size reductionsize reduction
– runtime effectruntime effect



1111

Size ReductionsSize Reductions

#vars #clauses #literals #vars #clauses #literals #vars #clauses #literals

6pipe 15,469 394,739 1,157,225 15,067 393,239 1,154,868 11,863 322,584 1,017,510
abp1-1-k31 14,809 48,483 123,522 8,183 34,118 97,635 3,075 17,687 63,252
barrel9 8,903 36,606 102,370 4,124 20,973 66,244 1,712 16,195 87,294
cache_10 227,210 879,754 2,191,576 129,786 605,614 1,679,937 28,902 177,868 747,696
comb2 31,933 112,462 274,030 20,238 89,100 230,537 3,072 18,327 63,466
f2clk_40 27,568 80,439 186,255 10,408 44,302 125,040 4,273 24,791 81,251
fifo8_400 259,762 707,913 1,601,865 68,790 300,842 858,776 23,120 129,358 445,717
guidance-1-k56 98,746 307,346 757,661 45,111 193,087 553,250 22,939 129,662 442,767
ibm-rule03_k80 88,641 375,087 972,575 55,997 307,728 887,363 28,320 190,387 629,470
ibm-rule20_k45 90,542 373,348 945,389 46,231 281,252 832,479 19,782 155,907 545,851
ip50 66,131 214,786 512,828 34,393 148,477 398,319 7,925 42,965 138,610
longmult15 7,807 24,351 58,557 3,629 16,057 45,899 1,442 8,725 28,497
w08_14 120,367 425,316 1,038,230 69,186 323,985 859,105 33,934 220,220 688,301

ORIGINAL NIVER SATELITE



1212

Size ReductionsSize Reductions



1313

Preprocessing TimePreprocessing Time



1414

Preprocessing Time (log-scale)Preprocessing Time (log-scale)



1515

Heads-up ComparisonHeads-up Comparison

MiniSatMiniSat



1616

ZChaffZChaff

Heads-up ComparisonHeads-up Comparison



1717

ConclusionsConclusions
● Many SAT problems inefficiently encoded.Many SAT problems inefficiently encoded.
● Big performance gain can be achieved by Big performance gain can be achieved by 

improving the encoding.improving the encoding.
● A solution at the SAT level can be efficient and A solution at the SAT level can be efficient and 

effective.effective.
● The presented method is completely resolution The presented method is completely resolution 

based, which facilitates proof-logging.based, which facilitates proof-logging.
● Other rewrite rules and implementation tricks are Other rewrite rules and implementation tricks are 

of course possible. We show by construction that of course possible. We show by construction that 
the general direction is worth looking at.the general direction is worth looking at.



1818

Future WorkFuture Work
● Look-ahead strategyLook-ahead strategy
● SchedulingScheduling

­ of application of self-subsumptionof application of self-subsumption
­ of variable eliminationof variable elimination

● Evaluating the differences and benefits of SAT Evaluating the differences and benefits of SAT 
preprocessing vs. a good clausifier.preprocessing vs. a good clausifier.



1919

BibliographyBibliography
[JS04][JS04] “Clause Form Conversions for Boolean Circuits” “Clause Form Conversions for Boolean Circuits”

Paul Jackson and Daniel Sheridan  (SAT 2004)Paul Jackson and Daniel Sheridan  (SAT 2004)

[Vel05][Vel05] “Efficient Translation of Boolean Formulas to CNF in Formal  “Efficient Translation of Boolean Formulas to CNF in Formal 
Verification of Microprocessors”Verification of Microprocessors”

Miroslav N. Velev   (Tech Report 2005)Miroslav N. Velev   (Tech Report 2005)

[Biere04][Biere04] “Expand and Resolve” “Expand and Resolve”
Armin Biere  (SAT 2004)Armin Biere  (SAT 2004)


