
Applying Logic Synthesis for Speeding Up SAT

Niklas Een, Alan Mishchenko, Niklas Sörensson

Cadence Berkeley Labs, Berkeley, USA.
EECS Department, University of California, Berkeley, USA.

Chalmers University of Technology, Göteborg, Sweden.

Abstract. SAT solvers are often challenged with very hard problems
that remain unsolved after hours of CPU time. The research community
meets the challenge in two ways: (1) by improving the SAT solver tech-
nology, for example, perfecting heuristics for variable ordering, and (2)
by inventing new ways of constructing simpler SAT problems, either us-
ing domain specific information during the translation from the original
problem to CNF, or by applying a more universal CNF simplification pro-
cedure after the translation. This paper explores preprocessing of circuit-
based SAT problems using recent advances in logic synthesis. Two fast
logic synthesis techniques are considered: DAG-aware logic minimization
and a novel type of structural technology mapping, which reduces the
size of the CNF derived from the circuit. These techniques are experi-
mentally compared to CNF-based preprocessing. The conclusion is that
the proposed techniques are complementary to CNF-based preprocessing
and speedup SAT solving substantially on industrial examples.

1 Introduction

Many of today’s real-world applications of SAT stem from formal verification,
test-pattern generation, and post-synthesis optimization. In all these cases, the
SAT solver is used as a tool for reasoning on boolean circuits. Traditionally,
instances of SAT are represented on conjunctive normal form (CNF), but the
many practical applications of SAT in the circuit context motivates the specific
study of speeding up SAT solving in this setting.

For tougher SAT problems, applying CNF based transformations as a pre-
processing step [6] has been shown to effectively improve SAT run-times by (1)
minimizing the size of the CNF representation, and (2) removing superfluous
variables. A smaller CNF improves the speed of constraint propagation (BCP),
and reducing the number of variables tend to benefit the SAT solver’s variable
heuristic. In the last decade, advances in logic synthesis has produced powerful
and highly scalable algorithms that perform similar tasks on circuits. In this
paper, two such techniques are applied to SAT.

The first technique, DAG-aware circuit compression, was introduced in [2]
and extended in [11]. In this work, it is shown that a circuit can be minimized
efficiently and effectively by applying a series of local transformations taking
logic sharing into account. Minimizing the number of nodes in a circuit tends
to reduce the size of the derived CNFs that are passed to the SAT engine. The

1

process is similar to CNF preprocessing where a smaller representation is also
achieved through a series of local rewrites.

The second technique applied in this paper is technology mapping for lookup-
table (LUT) based FPGAs. Technology mapping is the task of partitioning a
circuit graph into cells with k inputs and one output that fits the LUTs of
the FPGA hardware, while using as little area as possible. Many of the signals
present in the unmapped circuit will be hidden inside the LUTs. In this man-
ner, the procedure can be used to decide for which signals variables should be
introduced when deriving a CNF, leading to CNF encodings with even fewer
variables and clauses than existing techniques [14, 15, 9].

The purpose of this paper is to draw attention to the applicability of these
two techniques in the context of SAT solving. The paper makes a two-fold con-
tribution: (1) it proposes a novel CNF generation based on technology mapping,
and (2) it experimenally demonstrated the practicality of the logic synthesis
techniques for speeding up SAT.

2 Preliminaries

A combinational boolean network is a directed acyclic graph (DAG) with nodes
corresponding to logic gates and directed edges corresponding to wires connect-
ing the gates. Incoming edges of a node are called fanins and outgoing edges
are called fanouts. The primary inputs (PIs) of the network are nodes without
fanins. The primary outputs (POs) are nodes without fanouts. The PIs and POs
define the external connections of the network.

A special case of a boolean network is the and-inverter graph (AIG), contain-
ing four node types: PIs, POs, two-input AND-nodes, and the constant TRUE

modelled as a node with one output and no inputs. Inverters are represented
as attributes on the edges, dividing them into unsigned edges and signed (or
complemented) edges. An AIG is said to be reduced and constant-free if (1) all
the fanouts of the constant TRUE, if any, feed into POs; and (2) no AND-node
has both of its fanins point to the same node. Furthermore, an AIG is said to
be structurally-hashed if no two AND-nodes have the same two fanin edges in-
cluding the sign. By decomposing k-input functions into two-input ANDs and
inverters, any logic network can be reduced to an AIG implementing the same
boolean function of the POs in terms of the PIs.

A cut C of node n is a set of nodes of the AIG, called leaves, such that any
path from a PI to n passes through at least one leaf. A trivial cut of a node is
the cut composed of the node itself. A cut is k-feasible if the number of nodes in
it does not exceed k. A cut C is subsumed by C′ of the same node if C′ ⊂ C.

3 Cut Enumeration

Here we review the standard procedure for enumerating all k-feasible cuts of an
AIG. Let ∆1 and ∆2 be two sets of cuts, and the merge operator ⊗k be defined
as follows:

∆1 ⊗k ∆2 = { C1 ∪ C2 | C1 ∈ ∆1, C2 ∈ ∆2, |C1 ∪ C2| ≤ k }

2

Further, let n1, n2 be the first and second fanin of node n, and let Φ(n) denote
all k-feasible cuts of n, recursively computed as follows:

Φ(n) =

Φ(n1) , n ∈ PO
{{n}} , n ∈ PI
{{n}} ∪ Φ(n1) ⊗k Φ(n2) , n ∈ AND

This formula gives a simple procedure for computing all k-feasible cuts in a single
topological pass from the PIs to the POs. Informally, the cut set of an AND
node is the trivial cut plus the pair-wise unions of cuts belonging to the fanins,
excluding those cuts whose size exceeds k. Reconvergent paths in the AIG lead
to generating subsumed cuts, which may be filtered out for most applications.

In practice, all cuts can be computed for k ≤ 4. A partial enumeration, when
working with larger k, can be achieved by introducing an order on the cuts and
keeping only the L best cuts at each node. Formally: substitute Φ for ΦL where
ΦL(n) is defined as the trivial cut plus the L best cuts of ∆1 ⊗k ∆2.

4 DAG-Aware Minimization

The concept of DAG-aware minimization was introduced by Bjesse et. al. in [2],
and further developed by Mishchenko et. al. in [11]. The method works by making
a series of local modifications to the AIG, called rewrites, such that each rewrite
reduces the total number of AIG nodes. To accurately compute the effect of a
rewrite on the total number of nodes, logic sharing is taken into account. Two
equally-sized implementations of a logical function may have different impact on
the total node count if one of them contains a subgraph that is already present
in the AIG (see Figure 1).

In [11] the authors propose to limit the rewrites to 4-input functions. There
exists 216 = 65536 such functions. By normalizing the order and polarity of input

s ? x : y

&

& &

x s y

&

s y

~~>

s ? x : y

&

& &

x s y

Fig. 1. Given a netlist containing the two fragments on the left, one node can be saved
by rewriting the MUX “s ? x : y” to the form on the right, reusing the already present
node “¬s ∧ ¬y”.

3

and output variables, these functions are divided into 222 equivalence classes.1

Good AIG structures, or candidate implementations, for these 222 classes can
be precomputed and stored in a table. The algorithm of [11] is reviewed below:

DAG-Aware Minimization. Perform a 4-feasible cut enumeration, as
described in the previous section, proceeding topologically from the PIs
to the POs. During the cut enumeration, after computing the cuts for
the current node n, try to improve its implementation as follows: For
every cut C of n, let f be the function of n in terms of the leaves of
C. Consider all the candidate implementations of f and choose the one
that reduces the total number of AIG nodes the most. If no reduction is
possible, leave the AIG unchanged; otherwise recompute the cuts for the
new implementation of node n and continue the topological traversal.

Several components are necessary to implement this procedure:

– A cut enumeration procedure, as described in the previous section.

– A bottom-up topological iterator over the AIG nodes that can handle rewrites
during the iteration.

– An incremental procedure for structural hashing. In order to efficiently search
for the best substitution candidate, the AIG must be kept structurally-
hashed, reduced and constant-free. After a rewrite, these properties may
be violated and must be restored efficiently.

– A pre-computed table of good implementations for 4-input functions. We
propose to enumerate all structurally-hashed, reduced and constant-free AIGs
with 7 nodes or less, discarding candidates not meeting the following prop-
erty: For each node n, there should be no node m in the subgraph rooted in
n, such that replacing n with m leads to the same boolean function. Exam-
ple: “(a∧ b)∧ (a∧ c)” would be discarded since replacing the node “(a∧ b)”
with its subnode “b” does not change the function.

– An efficient procedure to evaluate the effect of replacing the current imple-
mentation of a node with a candidate implementation.

The implementation of the above components is straight-forward, albeit tedious.
We observe that in principle, the topological iterator can be modified to revisit
nodes as their fanouts change. When this happens, new opportunities for DAG-
aware minimization may be exposed. Modifying the iterator in this way yields
an idempotent procedure, meaning that nothing will change if it is run a second
time. In practice, we found it hard to make such a procedure efficient.

A simpler and more useful modification to the above procedure is to run it
several times with a perturbation phase in between. By changing the structure
of the AIG, without increasing its size, new cuts can conservatively be intro-
duced with the potential of revealing further node saving rewrites. One way of

1 Often referred to as the NPN-classes, for Negation (of inputs), Permutation (of
inputs), Negation (of the output).

4

perturbing the AIG structure is to visit all multi-input conjunctions and modify
their decomposition into two-input And-nodes. Another way is to perform the
above minimization algorithm, but allow for zero-gain rewrites.

5 CNF through the Tseitin Transformation

Many applications rely on a some version of the Tseitin transformation [14]
for producing CNFs from circuits. For completeness, we state the exact version
compared against in our experiments. When the transformation is applied to
AIGs, two improvements are often used: (1) multi-input Ands are recognized in
the AIG structure and translated into clauses as one gate, and (2) if-then-else
expressions (MUXes) are detected in the AIG through simple pattern matching
and given a specialized CNF translation. The clauses generated for these two
cases are:

x ↔ And(a1, a2, . . ., an). Clause representation:

a1 ∧ a2 ∧ . . . ∧ an → x

a1 → x, a2 → x, . . . , an → x

x ↔ ITE(s,t,f). If-then-else with selector s, true-branch t, false-branch f.
Clause representation:

s ∧ t → x s ∧ f → x (red) t ∧ f → x

s ∧ t → x s ∧ f → x (red) t ∧ f → x

The two clauses labeled “red” are redundant, but including them increases the
strength of unit propagation. It should be noted that a two-input Xor is handled
as a special case of a MUX with t and f pointing to the same node in opposite
polarity. This results in representing each Xor with four three-literal clauses
(the redundant clauses are trivially satisfied). In the experiments presented in
section 7, the following precise translation was used:

– The roots are defined as (1) And-nodes with multiple fanouts; (2) And-
nodes with a single fanout that is either complemented or leads to a PO; (3)
And-nodes that, together with its two fanin nodes, define an if-then-else.

– If a root node defines an if-then-else, the above translation with 6 clauses,
including redundant clauses, is used.

– The remaining root nodes are encoded as multi-input Ands. The scope of
the conjunction rooted at n is computed as follows: Let S be the set of the
two fanins of n. While S contains a non-root node, repeatedly replace that
node by its two fanins. The above clause translation for multi-input Ands
is then used, unless the conjunction collected in this manner contains both
x and ¬x, in which case, a unit clause coding for x ↔ False is used.

– Unlike some other work [7, 9], there is no special treatment of nodes that
occur only positively or negatively.

5

6 CNF through Technology Mapping

Technology mapping is the process of expressing an AIG in the form represen-
tative of an implementation technology, such as standard cells or FPGAs. In
particular, lookup-table (LUT) mapping for FPGAs consists in grouping And-
nodes of the AIG into logic nodes with no more than k inputs, each of which
can be implemented by a single LUT.

Normally, technology mapping procedures optimize the area of the mapped
circuit under delay constraints. Optimal delay mapping can be achieved effi-
ciently [3], but is not desirable for SAT where size matters more than logic
depth. Therefore we propose to map for area only, in such a way that a small
CNF can be derived from the mapped circuit. In the next subsections, we review
an improved algorithm for structural technology mapping [12].

6.1 Definitions

A mapping M of an AIG is a partial function that takes a non-PI (i.e. And or
PO) node to a k-feasible non-trivial cut of that node. Nodes for which mapping
M is defined are called active (or mapped), the remaining nodes are called
inactive (or unmapped). A proper mapping of an AIG meets the following three
criteria: (1) all POs are active, (2) if node n is active, every leaf of cut M(n) is
active, and (3) for every active And-node m, there is at least one active node
n such that m is a leaf of cut M(n). The trivial mapping (or mapping induced
by the AIG) is the proper mapping which takes every non-PI node to the cut
composed of its immediate fanins.

An ordered cut-set ΦL is a total function that takes a non-PI node to a non-
empty ordered sequence of L or less k-feasible cuts. In the next section, M and
ΦL as will be viewed as updateable objects and treated imperatively with two
operations: For an inactive node n, procedure activate(M, ΦL, n) sets M(n) to
the first cut in the sequence ΦL(n), and then recursively activates inactive leaves
of M(n). Similarly, for an active node n, procedure inactivate(M, n), makes node
n inactive, and then recursively inactivates any leaf of the former cut M(n) that
is violating condition (3) of a proper mapping.

Furthermore, nFanouts(M, n) denotes the number of fanouts of n in the
subgraph induced by the mapping. The average fanout of a cut C is the sum of
the number of fanouts of its leaves, divided by the number of leaves. Finally, the
maximally fanout-free cone (MFFC) of node n, denoted mffc(M, n), is the set
of nodes used exclusively by n. More formally, a node m is part of n’s MFFC iff
every path in the current mapping M from m to a PO passes through n. For an
inactive node, mffc(M, ΦL, n) is defined as the nodes that would belong to the
MFFC of node n if it was first activated.

6.2 A Single Mapping Phase

Technology mapping performs a sequence of refinement phases, each updating
the current mapping M in an attempt to reduce the total cost. The cost of a

6

single cut, cost(C), is given as a parameter to the refinement procedure. The
total cost is defined as sum of cost(M(nact)) over all active nodes nact .

Let M and ΦL be the proper mapping and the ordered cut-set from the
previous phase. A refinement is performed by a bottom-up topological traversal
of the AIG, modifying M and ΦL for each And-node n as follows:

– All k-feasible cuts of node n (with fanins n1 and n2) are computed, given
the sets of cuts for the children: ∆ = {{n}} ∪ ΦL(n1) ⊗k ΦL(n2)

– If the first element of ΦL(n) is not in ∆, it is added. This way, the previously
best cut is always eligible for selection in the current phase, which is a
sufficient condition to ensure global monotonicity for certain cost functions.

– ΦL(n) is set to be the L best cuts from ∆, where smaller cost, higher average
fanout, and smaller cut size is better. The best element is put first.

– If n is active in the current mapping M, and if the first cut of ΦL(n) has
changed, the mapping is updated to reflect the change by calling inacti-
vate(M, n) followed by calling activate(M, ΦL, n). After this, M is guaran-
teed to be a proper mapping.

6.3 The Cost of Cuts

This subsection defines two complementary heuristic cost function for cuts:

Area Flow. This heuristic estimates the global cost of selecting a cut C by
recursively approximating the cost of other cuts that have to be introduced
in order to accommodate cut C:

costAF (C) = area(C) +
∑

n∈C

costAF (first(ΦL(n)))

max(1,nFanouts (M, n))

Exact Local Area. For nodes currently not mapped, this heuristic computes
the total cost-increase incurred by activating n with cut C. For mapped
nodes, the computations is the same but n is first deactivated. Formally:

mffc(C) =
⋃

n∈C

mffc(M, ΦL, n)

costELA(C) =
∑

n∈mffc(C)

area(first(ΦL(n))

In standard FPGA mapping, each cut is given an area of 1 because it takes one
LUT to represent it. A small but important adjustment for CNF generation is
to define area in terms of the number of clauses introduced by that cut. Doing
so affects both the area flow and the exact local area heuristic, making them
prefer cuts with a small representation.

The boolean function of a cut is translated into clauses by deriving its irredun-
dant sum-of-products (ISOP) using Minato-Morreale’s algorithm [10] (reviewed

7

cover isop(boolfunc L, boolfunc U)
{

if (L == False) return ∅
if (U == True) return {∅}

x = topVariable(L, U)
(L0, L1) = cofactors(L, x)
(U0, U1) = cofactors(U , x)

c0 = isop(L0 ∧ ¬U1, U0)
c1 = isop(L1 ∧ ¬U0, U1)
Lnew = (L0 ∧ ¬func(c0)) ∨ (L1 ∧ ¬func(c1))
c∗ = isop(Lnew , U0 ∧ U1)

return ({x} × c0) ∪ ({¬x} × c1) ∪ c∗

}

Fig. 2. Irredundant sum-of-product generation. A cover (= SOP = DNF) is a set,
representing a disjunction, of cubes (= product = conjunction of literals). A cover c

induces a boolean function func(c). An irredundant SOP is a cover c where no cube
can be removed without changing func(c). In the code, boolfunc denotes a boolean
function of a fixed number of variables x1, x2, . . . , xn (in our case, the width of a LUT).
L and U denotes the lower and upper bound on the cover to be returned. At top-level,
the procedure is called with L = U . Furthermore, topVariable(L, U) selects the first
variable, from a fixed variable order, which L or U depends on. Finally, cofactors(F ,
x) returns the pair (F [x = 0], F [x = 1]).

in Figure 2). ISOPs are computed for both f and ¬f to generate clauses for
both sides of the bi-implication t ↔ f(x1, . . . , xk). For the sizes of k used in
the experiments, boolean functions are efficiently represented using truth-tables.
In practice, it is useful to impose a bound on the number of products generated
and abort the procedure if it is exceeded, giving the cut an infinitly high cost.

6.4 The Complete Mapping Procedure

Depending on the time budget, technology mapping may involve different num-
ber of refinement passes. For SAT, only a very few passes seem to pay off. In
our experiments, the following two passes were used, starting from the trivial
mapping induced by the AIG:

– An initial pass, using the area-flow heuristic, costAF , which captures the
global characteristics of the AIG.

– A final pass with the exact local area heuristic, costELA. From the definition
of local area, this pass cannot increase the total cost of the mapping.

Finally, there is a trade-off between the quality of the result and the speed of the
mapper, controlled by the cut size k and the maximum number of cuts stored at
each node L. To limit the scope of the experimental evaluation, these parameters
were fixed to k = 8 and L = 5 for all benchmarks. From a limited testing, these
values seemed to be a good trade-off. It is likely that better results could be
achieved by setting the parameters in a problem-dependent fashion.

8

7 Experimental Results

To measure the effect of the proposed CNF reduction methods, 30 hard SAT
problems represented as AIGs were collected from three different sources. The
first suite, “Cadence BMC”, consists of internal Cadence verification problems,
each of which took more than one minute to solve using SMV’s BMC engine.
Each of the selected problem contains a bug and has been unrolled upto the
length k, which reveals this bug (yielding a satisfiable instance) as well as upto
length k − 1 (yielding an unsatisfiable instance).

The second suite, “IBM BMC”, is created from publically available IBM
BMC problems [16]. Again, problems containing a bug were selected and unrolled
to length k and k − 1. Problems that MINISAT could not solve in 60 minutes
were removed, as were problems solved in under 5 seconds.

Finally, the third suite, “SAT Race”, was derived from problems of SAT-Race
2006. Armin Biere’s tool “cnf2aig”, part of the AIGER package [1], was applied
to convert the CNFs to AIGs. Among the problems that could be completely
converted to AIGs, the “manol-pipe” class were the richest source. As before,
very hard and very easy problems were not considered.

For the experiments, we used the publically available synthesis and verifi-
cation tool ABC [8] and the SAT solver MINISAT2. The exact version of ABC
used in these experiments, as well as other information useful for reproducing
the experimental results presented in this paper, can be found at [5].

Clause Reduction. In Table 1 we compare the difference between generat-
ing CNFs using only the Tseitin encoding (section 5) and generating CNFs by
applying different combinations of the presented techniques, as well as CNF pre-
processing [6] (as implemented in MINISAT2). Reductions are measured against
the Tseitin encoding. For example, a reduction of 62% means that, on average,
the transformed problem contains 0.38 times the original number of clauses.

We see a consistent reduction in the CNF size, especially in the case where
the CNF was derived using technology mapping. The preprocessing scales well,
although its runtime, in our current implementation, is not negligible.

For space reasons, we do not present the total number of literals. However, we
note that: (1) the speed of BCP depends on the number of clauses, not literals;
(2) deriving CNFs from technology mapping produces clauses of at most size
k + 1, which is 9 literals in our case; and (3) in [6] it was shown that CNF
preprocessing in general does not increase the number of literals significantly.

SAT Runtime. In Table 2 we compare the SAT runtimes of the differently
preprocessed problems. Runtimes do not include preprocessing times. At this
stage, when the preprocessing has not been fully optimized for the SAT context,
it is arguably more interesting to see the potential speedup. If the preprocessing
is too slow, its application can be controlled by modifying one of the parameters
(such as the number or width of cuts computed), or preprocessing may be delayed
until plain SAT solving has been tried for some time without solving the problem.
Furthermore, for BMC problems, the techniques can be applied before unrolling
the circuit, which is significantly faster (see Incremental BMC below).

9

Speedup is given both as a total speedup (the sum total of all SAT runtimes)
and as arithmetic and harmonic average of the individual speedups. For BMC,
we see a clear gain in the proposed methods, most notably for the Cadence
BMC problems where a total speedup of 6.9x was achieved not using SATELITE-
style preprocessing, and 5.3x with SATELITE-style preprocessing (for a total of
22.3x speedup compared to plain SAT on Tseitin). However, the problems from
the SAT-Race benchmark exhibit a different behavior resulting in an increased
runtime. It is hard to explain this behavior without knowing the details of the
benchmarks. For example, equivalence checking problems are easier to solve if
the equivalent points in the modified and golden circuit are kept. The proposed
methods may remove such pairs, making the problems harder for the SAT solver.

CNF Generation based on Technology Mapping. Here we measure the
effect of using the number of CNF clauses as the size estimator of a LUT, rather
than a unit area as in standard technology mapping. In both cases, we map using
LUTs of size 8, keeping the 5 best cuts at each node during cut enumeration.
The results are presented in Table 5. As expected, the proposed technique lead
to fewer clauses but more variables. In these experiments, the clause reduction
almost consistently resulted in shorter runtimes of the SAT solver.

Incremental BMC. An alternative and cheaper use of the proposed tech-
niques in the context of BMC, is to minimize the AIG before unrolling. This
prevents simplification across different time frames, but is much faster (in our
benchmarks, the runtime was negligible). The clause reduction and the SAT
runtime using DAG-aware minimization are given in Table 4. In this particu-
lar experiment, ABC was not used, but an in-house Cadence implementation of
DAG-aware minimization and incremental BMC. Ideally, we would like to test
the CNF generation based on technology mapping as well, but this is currently
not available in the Cadence tool. For licence reasons, IBM benchmarks could
not be used in this experiment. Instead, 5 problems from the TIP-suite [1] were
used, but they suffer from being too easy to solve.

8 Conclusions

The paper explores logic synthesis as a way to speedup the solving of circuit-
based SAT problems. Two logic synthesis techniques are considered and ex-
perimentally evaluated. The first technique applies recent work on DAG-aware
circuit compression to preprocess a circuit before converting it to CNF. In spirit,
the approach is similar to [4]. The second technique directly produces a compact
CNF through a novel adaptation of area-oriented technology mapping, measur-
ing area in terms of CNF clauses.

Experimental results on several sets of benchmarks have shown that the pro-
posed techniques tend to substantially reduce the runtime of SAT solving. The
net result of applying both techniques is a 5x speedup in solving for hard indus-
trial problems. At the same time, some slow-downs were observed on benchmarks
from the previous year’s SAT Race. This indicates that more work is needed for
understanding the interaction between the circuit structure and the heuristics
of a modern SAT-solver.

10

9 Acknowledgements

The authors acknowledge helpful discussions with Satrajit Chatterjee on tech-
nology mapping and, in particular, his suggestion to use the average number of
fanins’ fanouts as a tie-breaking heuristic in sorting cuts.

Clause Reduction (k clauses) Preprocessing Time (sec)
Problem (orig) S D DS T TS DT DTS S D DS T TS DT DTS

Cdn1-70u 160 113 69 43 54 41 36 29 1 6 7 14 15 11 12
Cdn1-71s 166 117 71 44 55 43 37 30 1 6 6 14 15 12 12
Cdn2-154u 682 452 467 310 312 257 282 254 6 31 35 48 51 66 68
Cdn2-155s 693 459 475 316 318 262 287 259 7 32 36 49 52 67 69
Cdn3.1-18u 1563 813 952 511 905 529 506 306 12 91 99 151 159 189 193
Cdn3.1-19s 1686 898 1028 559 977 593 547 336 12 98 107 162 170 208 212
Cdn3.2-19u 1684 899 1027 561 977 578 547 337 12 98 106 163 171 206 210
Cdn3.2-20s 1807 979 1102 611 1049 612 588 368 13 104 114 175 184 219 224
Cdn3.3-19u 1686 897 1027 560 977 578 547 338 12 100 109 163 171 204 208
Cdn3.3-20s 1809 974 1103 611 1049 647 588 368 14 104 113 174 183 224 229
ibm18-28u 151 95 72 55 67 54 50 48 1 5 6 11 11 11 12
ibm18-29s 158 99 75 57 70 56 53 50 1 5 6 11 12 12 12
ibm20-43u 253 156 127 97 120 99 89 85 2 10 11 19 20 20 21
ibm20-44s 259 161 131 100 123 101 91 88 2 10 11 19 20 21 21
ibm22-51u 415 269 211 160 201 174 149 143 4 16 17 31 33 33 34
ibm22-52s 425 275 216 164 205 178 153 147 4 16 18 32 33 34 34
ibm23-35u 231 147 116 86 100 85 80 76 2 9 9 17 18 18 19
ibm23-36s 239 152 120 89 103 89 83 78 2 9 10 17 18 19 19
ibm29-25u 53 35 28 21 22 20 18 17 0 2 2 4 4 5 5
ibm29-26s 55 36 29 22 24 21 19 18 0 2 3 5 5 5 5
c10id-s 293 273 280 258 177 159 167 151 2 20 21 31 33 46 48
c10nidw-s 643 593 612 563 416 380 394 363 4 47 52 77 84 119 126
c6nidw-i 154 142 147 134 97 89 93 87 1 10 11 18 19 26 27
c7b 41 36 39 33 27 26 26 25 0 3 3 5 6 7 8
c7b-i 40 36 38 33 27 26 26 25 0 3 4 5 5 7 8
c9 23 20 20 17 15 14 13 12 0 2 2 3 3 4 4
c9nidw-s 535 489 507 465 340 312 326 300 4 39 42 66 71 96 101
g10b 128 116 127 111 87 82 83 76 1 9 10 15 16 23 24
g10id 258 240 254 234 161 147 156 143 2 20 21 30 32 47 49
g7nidw 119 110 118 107 78 72 75 70 1 8 8 13 14 20 21

Avg. red. – 29% 32% 47% 46% 56% 57% 62%

Table 1. CNF generation with different preprocessing. “(orig)” denotes the original
Tseitin encoding; “D” DAG-Aware minimization; “T” CNF generation through Tech-
nology Mapping; “S” SATELITE style CNF preprocessing. On the left, the number of
clauses in the CNF formulation is given, in thousands. On the right, the runtimes of
applied preprocessing are summed up. No column for the time of generating CNFs
through Tseitin encoding is given, as they are all less than a second. The “Cdn” prob-
lems are internal Cadence BMC problems; the “ibm” problems are IBM BMC problems
from [16]; the remaining ten problems are the “manol-pipe” problems from SAT-Race
2006 [13] back-converted by “cnf2aig” into the AIG form.

11

SAT Runtime (sec) – Cadence BMC
Problem (orig) S D DS T TS DT DTS

Cdn1-70u 21.9 12.3 3.6 3.1 2.5 4.1 1.2 1.3
Cdn1-71s 15.2 8.8 7.7 3.9 2.1 3.1 4.0 2.7
Cdn2-154u 116.4 48.3 41.1 37.7 11.6 34.4 15.6 9.3
Cdn2-155s 101.8 22.9 12.9 16.2 18.2 50.6 13.4 6.9
Cdn3.1-18u 1516.0 139.4 361.9 119.4 196.3 78.8 78.8 39.0
Cdn3.1-19s 1788.2 276.7 535.0 154.8 317.8 137.1 131.9 42.5
Cdn3.2-19u 403.8 214.4 239.8 169.7 140.9 73.7 114.8 78.1
Cdn3.2-20s 3066.1 893.4 1002.9 353.2 376.2 313.5 687.5 96.5
Cdn3.3-19u 316.1 225.6 133.9 104.7 107.9 107.6 53.2 55.0
Cdn3.3-20s 2305.4 456.4 863.1 385.8 507.0 236.9 307.2 101.2

Total speedup: 4.2x 3.0x 7.2x 5.7x 9.3x 6.9x 22.3x
Arithmetic average speedup: 3.9x 3.6x 6.5x 6.3x 7.6x 9.2x 19.7x
Harmonic average speedup: 2.7x 2.9x 4.8x 5.3x 4.9x 6.6x 11.5x

SAT Runtime (sec) – IBM BMC
Problem (orig) S D DS T TS DT DTS

ibm18-28u 83.7 82.6 39.2 41.9 45.0 54.2 23.2 18.5
ibm18-29s 93.6 47.6 46.8 25.1 36.9 23.5 25.9 20.9
ibm20-43u 805.5 890.1 402.3 488.0 540.3 283.6 219.9 215.1
ibm20-44s 1260.2 278.4 305.6 83.8 277.2 422.2 265.7 303.6
ibm22-51u 361.8 194.6 109.2 88.6 145.8 170.8 67.0 82.5
ibm22-52s 408.4 489.0 148.3 135.7 187.2 177.9 120.5 91.3
ibm23-35u 540.3 365.9 264.2 241.5 260.1 220.2 181.4 130.7
ibm23-36s 856.2 743.4 527.9 356.8 436.2 585.7 144.7 238.1
ibm29-25u 329.7 375.6 39.0 29.4 42.9 56.6 28.5 11.4
ibm29-26s 71.3 190.5 41.7 20.9 71.5 31.5 28.0 25.4

Total speedup: 1.3x 2.5x 3.2x 2.4x 2.4x 4.4x 4.2x
Arithmetic average speedup: 1.5x 3.0x 4.9x 2.8x 2.8x 4.7x 6.5x
Harmonic average speedup: 1.0x 2.4x 3.1x 2.1x 2.4x 4.0x 4.3x

Table 2. SAT runtime with different preprocessing. “(orig)” denotes the original
Tseitin encoding; “D” DAG-Aware minimization; “T” CNF generation through Tech-
nology Mapping; “S” SATELITE style CNF preprocessing. Given times do not include
preprocessing, only SAT runtimes. Speedups are relative to the “(orig)” column.

12

SAT Runtime (sec) – SAT Race
Problem (orig) S D DS T TS DT DTS

c10id-s 26.7 5.1 25.1 23.6 50.6 25.2 49.8 14.7
c10nidw-s 710.5 624.7 700.3 880.4 383.6 698.1 212.7 856.6
c6nidw-i 414.4 267.1 734.7 412.5 244.5 209.7 540.1 710.3
c7b 29.4 167.2 76.3 58.4 34.6 43.9 63.9 435.5
c7b-i 101.4 54.2 68.1 52.0 49.5 93.2 293.4 154.5
c9 10.8 51.2 11.4 32.8 11.8 21.0 44.1 83.1
c9nidw-s 122.5 625.2 246.9 864.8 287.2 446.7 952.6 285.2
g10b 385.3 388.8 446.0 183.6 106.5 225.6 291.2 182.5
g10id 736.0 350.7 524.0 723.9 98.3 92.0 190.6 188.4
g7nidw 119.4 24.8 78.3 67.3 13.5 17.2 63.6 37.8

Total speedup: 1.0x 0.9x 0.8x 2.1x 1.4x 1.0x 0.9x
Arithmetic average speedup: 1.8x 1.0x 1.1x 2.8x 2.3x 1.3x 1.4x
Harmonic average speedup: 0.5x 0.8x 0.6x 1.2x 0.9x 0.5x 0.3x

Table 3. SAT runtime with different preprocessing (cont. from Table 2).

Nodes before and BMC runtimes before
Problem after minimization and after minimization

Cdn1 3,527 → 949 37.8 s → 9.6 s
Cdn2 7,918 → 3,126 17.5 s → 0.8 s
Cdn3.1 84,718 → 28,637 607.1 s → 275.3 s
Cdn3.3 84,698 → 28,611 >1 h → 1823.7 s
Cdn4 2,936 → 1,538 >1 h → >1 h

nusmv:tcas5 2,661 → 1,975 9.11 s → 2.27 s
nusmv:tcas6 2,656 → 1,965 4.12 s → 0.67 s
texas.parsesys1 11,860 → 939 0.64 s → 0.03 s
texas.two-proc2 791 → 335 0.23 s → 0.01 s
vis.eisenberg 720 → 306 1.63 s → 2.01 s

Table 4. Incremental BMC on original and minimized AIG. The above problems all
contain bugs. Runtimes are given for performing incremental BMC upto the shortest
counter example. In the columns to the right of the arrows, the design has been min-
imized by DAG-aware rewriting before unrolling it. The node count is the number of
Ands in the design. Note that in this scheme, there can be no cross-timeframe simpli-
fications. The experiment confirms the claim in [2] of the applicability of DAG-aware
circuit comparession to formal verification. The original paper only listed compression
ratios and did not include runtimes.

13

Technology Mapping for CNF
Problem #clauses #vars SAT-time

Cdn1-70u 62 k → 54 k 12 k → 15 k 6.6 s → 4.1 s
Cdn1-71s 64 k → 55 k 13 k → 15 k 6.6 s → 3.1 s
Cdn2-154u 327 k → 312 k 58 k → 77 k 23.3 s → 34.4 s
Cdn2-155s 333 k → 318 k 58 k → 78 k 21.4 s → 50.6 s
Cdn3.1-18u 1990 k → 905 k 145 k → 248 k 125.9 s → 78.8 s
Cdn3.1-19s 2147 k → 977 k 156 k → 267 k 161.2 s → 137.1 s
Cdn3.2-19u 2146 k → 977 k 156 k → 266 k 189.9 s → 73.7 s
Cdn3.2-20s 2302 k → 1049 k 167 k → 285 k 501.6 s → 313.5 s
Cdn3.3-19u 2147 k → 977 k 156 k → 267 k 136.4 s → 107.6 s
Cdn3.3-20s 2302 k → 1049 k 167 k → 285 k 311.7 s → 236.9 s

Table 5. Comparing CNF generation through standard technology mapping and tech-
nology mapping with the cut cost function adapted for SAT. In the adapted CNF gener-
ation based on technology mapping (righthand side of arrows), the area of a LUT
is defined as the number of clauses needed to represent its boolean function. In the
standard technology mapping (lefthand side of arrows), each LUT has unit area
“1”. In both cases, the mapped design is translated to CNF by the method described
in section 6.4, which introduces one variable for each LUT in the mapping. The stan-
dard technology mapping minimizes the number of LUTs, and hence will have a lower
number of introduced variables. From the table it is clear that using the number of
clauses as the area of a LUT gives significantly fewer clauses, and also reduces SAT
runtimes.

References

1. A. Biere. AIGER (AIGER is a format, library and set of utilities for And-Inverter Graphs
(AIGs)). http://fmv.jku.at/aiger/.

2. P. Bjesse and A. Boralv. DAG-Aware Circuit Compression For Formal Verification. In
Proc. ICCAD’04, 2004.

3. D. Chen and J. Cong. DAOmap: A Depth-Optimal Area Optimization Mapping Algo-

rithm for FPGA Designs. In ICCAD, pages 752–759, 2004.
4. R. Drechsler. Using Synthesis Techniques in SAT Solvers. Technical Report, Intitute of

Computer Schience, Unversity of Bremen, 28359 Bremen, Germany, 2004.
5. N. Een. http://www.cs.chalmers.se/˜een/SAT-2007.
6. N. Een and A. Biere. Effective Preprocessing in SAT through Variable and Clause

Elimination. In Proc. of Theory and Applications of Satisfiability Testing, 8th International
Conference (SAT’2005), volume 3569 of LNCS, 2005.

7. N. Een and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. In Journal
on Satisfiability, Boolean Modelling and Computation (JSAT), volume 2 of IOS Press, 2006.

8. B. L. S. Group. ABC: A System for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/˜alanmi/abc/.

9. P. Jackson and D. Sheridan. Clause Form Conversions for Boolean Circuits. In Theory
and Appl. of Sat. Testing, 7th Int. Conf. (SAT’04), volume 3542 of LNCS, Springer, 2004.

10. S. Minato. Fast Generation of Irredundant Sum-Of-Products Forms from Binary

Decision Diagrams. In Proc. SASIMI’92.
11. A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG rewriting: A fresh look

at combinational logic synthesis. In Proc. DAC’06, pages 532–536, 2006.
12. A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements to Technology Mapping for

LUT-based FPGAs. volume 26:2, pages 240–253, February 2007.
13. C. Sinz. SAT-Race 2006 Benchmark Set. http://fmv.jku.at/sat-race-2006/.
14. G. Tseitin. On the complexity of derivation in propositional calculus. Studies in

Constr. Math. and Math. Logic, 1968.
15. M. N. Velev. Efficient Translation of Boolean Formulas to CNF in Formal Verification

of Microprocessors. Proc. of Conf. on Asia South Pacific Design Aut. (ASP-DAC), 2004.
16. E. Zarpas. Benchmarking SAT Solvers for Bounded Model Checking. In Proc. SAT’05,

number 3569 in LNCS. Springer-Verlag, 2005.

14

